Der Einfluß nährwertverbesserten Strohs auf Wachstum und Energieversorgung von jungen Schaflämmern

The effect of nutritionally improved straw on growth and energy supply in young lambs

Von K. Becker *, E. Pfeffer **) und M. Moctar ***)

1. Einleitung

Das Nährstoffangebot für Rinder und Schafe unterliegt in den tropischen und subtropischen Regionen großen jahreszeitlichen Schwankungen.

Einem Überangebot an Futter während der Regenzeit folgt meist ein gravierendes Defizit in der sich anschließenden Trockenperiode. Insbesondere alle semiariden Grasflächen leiden unter einer verlängerten Trockenzeit, in der die Grasqualität ständig zurückgeht (10).

Spiegelbildlich macht sich der Rückgang im Nährstoffangebot bei Tieren, die ausschließlich auf solches Futter angewiesen sind, in einem abnehmenden Körpergewicht bemerkbar. Entscheidend ist solches Gras durch die niedrige Verdaulichkeit der organischen Substanz charakterisiert, die oft nur bei 40 % liegt. Die hierdurch bedingte schlechte Energieversorgung verursacht negative N-Bilanzen (10).

Ein über längere Perioden bestehendes Nährstoffdefizit führt zu irreversiblen Schäden bei jungen, wachsenden Tieren, die dann in der sich anschließen-

*) Dr. Klaus Becker, Institut für Tierphysiologie und Tierernährung der Universität Göttingen.
Anschrift: Oskar-Kellner-Weg 6, 3400 Göttingen.

**) Prof. Dr. E. Pfeffer, Direktor des Instituts für Tierernährung der Rheinischen Friedrich-Wilhelms-Universität.
Anschrift: Endenicher Allee 15, 5300 Bonn - 1.

***) Dr. Moussa Moctar, Institut d’Elévage et de Medecine Vétérinaire des Pays Tropicaux Région de Recherches Vétérinaires et Zootechniques de l’Afrique Centrale.
Anschrift: Laboratoire de Farcha N’Djaména Tchad.
den Zeit eines günstigen Futterangebotes eine schlechtere Verwertung der Nahrung als nicht geschädigte Tiere aufweisen.

Besonders junge, wachsende Wiederkäuer geraten in der Trockenzeit sehr schnell in eine negative Energie- und Stickstoffbilanz, wenn ihnen ausschließlich schlecht verdauliches und proteinarmes Futter zur Verfügung steht. Da ein hoher Rohfaseranteil in Futtermitteln gleichzeitig mit einer geringen Aufnahme korreliert ist, sind die Gewichtsverluste im entsprechenden Zeitraum beträchtlich. Damit ist eine Situation eingetreten, in der die Verabreichung eines Beifutters als notwendig und sinnvoll angesehen werden muß, damit Totalverluste vermieden werden können.

In unterschiedlichem Ausmaß verfügen die Länder tropischer und subtropischer Regionen über industrielle und landwirtschaftliche Beiprodukte, die als Komponenten oder als Alleinfutter im besagten Zeitraum Verwendung finden könnten. Die meisten dieser Bei- und Nebenprodukte sind durch hohen Rohfaseranteil und geringe Verdaulichkeit gekennzeichnet; eignen sich also nicht für die menschliche Ernährung oder den Einsatz in der Geflügel- und Schweinefütterung.

Eine Möglichkeit, den energetischen Futterwert für Wiederkäuer durch Erhöhung der Verdaulichkeit der organischen Substanz erheblich zu steigern, ist durch den Alkaliaufschluß gegeben.

2. Material und Methoden

2.1. Versuchsfutter

Der Hauptanteil der Ration bestand entweder aus NaOH-behandelten Weizenstroh- oder melassierten Trockenschnitzel-Pellets. Daneben wurden gleiche Mengen Heu (etwa 40 Gramm/Tier/Tag) den Versuchstieren angeboten.
Als Proteinquelle diente Sojaextraktionsschrot (160 Gramm/Tier/Tag). Der geringe N-Gehalt des Weizenstrohs und die größeren Stickstoffmengen, die mit den Trockenschnitzeln verabreicht wurden, blieben in der Kalkulation unberücksichtigt.

Eine Vitamin- und Mineralstoffsupplementierung erfolgte nicht. Die Nährstoffzusammensetzung der Versuchsfutter zeigt Tabelle 1, aus welcher auch zu entnehmen ist, daß der Rohfasergehalt in der mit NaOH-Stroh-Pellets gefütterten Versuchsgruppe wesentlich den der Schnitzelgruppe übersteigt.

2.2. Versuchstiere

2.3. Versuchsplan

2.4. Fütterung

Die beiden Grundfuttermittel standen den Tieren ständig in ausreichender Menge zur Verfügung. Die geringe Heuration wurde einmal am Tag vorgelegt, das Sojaextraktionsschrot auf zwei Mahlzeiten (8.00 und 16.00 Uhr) aufgeteilt. Frisches Wasser stand zur freien Aufnahme zur Verfügung.

2.5. Haltung der Lämmer

Während der gesamten Versuchszeit (14 Tage Vorfütterung plus 64 Versuchstage) wurden die Lämmer in Stoffwechselkästen gehalten, die ein quantitatives Sammeln des Kotes erlauben, während der Harn durch ein zusätzliches
am Tier angebrachtes Urinal in eine Sammelflasche abgeleitet wurde. Durch diese Vorgehensweise war es möglich, eine genaue Kontrolle der Futteraufnahme für jedes Tier zu bekommen. Die Urinale waren nur während der einwöchigen Sammelperiode an den Tieren angebracht.

2.6. Analytik

Von den während des Versuches eingewogenen Futtermitteln wurden repräsentative Proben gezogen, die dann anschließend auf ihren Gehalt an Weender Rohnährstoffen untersucht wurden.

Die N-Bestimmung erfolgte nach Kjeldahl, Rohfett nach Soxhlet und Rohnasche durch trockene Veraschung bei 823 K (550° C).

3. Ergebnisse

Nachdem dann um den 60. Tag auch die Futteraufnahme zurückging, wurde der Versuch beendet.

Über die Zusammensetzung an Weender Rohnährstoffe der eingesetzten Rationskomponenten informiert Tabelle 1.

Der Aufwand an Futtetrockenmasse je Einheit Lebendmasse-Zunahme lag in der mit Trockenschnitzel versorgten Gruppe deutlich niedriger, wobei innerhalb dieser beiden Gruppen recht große Schwankungen auftraten.

Aus den Zahlen läßt sich weiterhin ableiten, daß die zur freien Aufnahme angebotenen Pellets jeweils mehr als 80 % der Gesamtration ausmachten.

Die am Ende der Versuchsperiode ermittelten Daten eines Stoffwechselversuchs werden in der Tabelle 3 mitgeteilt.
Es fällt auf, daß die Höhe der Futteraufnahme nicht identisch ist mit den für den gesamten Versuchszeitraum errechneten Werten. Ein um 35 % höherer Verzehr im Vergleich zum Durchschnitt im Gesamtzeitraum errechnet sich für die mit NaOH-Stroh gefütterten Tiere, für die zweite Versuchsgruppe ergibt sich eine Mehraufnahme von nur 15 %.

Die scheinbare Verdaulichkeit der organischen Substanz der Gesamtration lag bei Strohfütterung zwischen 55,5 % und 60,6 %, wenn Schnitzel ad-lib. angeboten wurden, ergab sich eine Variation von 87,6 % bis 90,1 %.

Bezieht man die scheinbar verdaute organische Substanz auf das metabolische Körpergewicht, lassen sich zwischen den Versuchsgruppen keine signifikanten Unterschiede errechnen.

4. Diskussion

Aus den in der Tabelle 3 aufgeführten Daten zur Aufnahme und Verdaulichkeit der organischen Substanz lassen sich wichtige energetische Größen ableiten.

Unter der Annahme, daß ein Gramm verdauter organischer Substanz einen Brennwert von 18 KJ hat, ergeben sich für die einzelnen Tiere die in der Tabelle 4 mitgeteilten Werte.

Hier wird deutlich, daß die Aufnahme an verdaulicher Energie zwischen der Stroh- und Schnitzelgruppe nicht unterschiedlich ist, was auch durch eine statistische Überprüfung bestätigt werden konnte.

Es kann festgestellt werden, daß die mit Stroh gefütterten Lämmer durch erhöhte Futteraufnahme auf der Stufe „scheinbar verdauliche Energie“ den Nachteil der niedrigeren Verdaulichkeit der Strohration gegenüber den Schnitzeln voll ausgleichen konnten.

Entsprechend war der Aufwand an Futtertrockenmasse, in der mit NaOH-Stroh-Pellets gefütterten Gruppe signifikant höher (P < 0,1 %). Die absolute Höhe der Verdaulichkeit der organischen Substanz aus Stroh — wenn angenommen wird, daß alle übrigen Komponenten zu 100 % verdaut wurden — betrug 49,8 %.

Dieser Wert ist identisch mit Ergebnissen von Pfeffer et al. (8) und liegt etwas niedriger als die von Robb (9) mitgeteilten Werte. Geringfügig niedrigere Verdaulichkeiten (46,3 %) erzielte Becker (unveröffentlicht) bei wachsenden Lämtern, die mit einer Labmagenfistel versehen waren.

Legt man eine Verdaulichkeit der organischen Substanz von 50 % für das alkali behandelte Stroh zugrunde, ergibt sich eine errechnete Konzentration an verdaulicher Energie von 7,8 MJ je Kilogramm Trockensubstanz für die Strohpellets und 14,3 MJ für die melasierten Trockenschnitzel.

Nimmt man eine Umsetzbarkeit der verdaulichen Energie von 80 % an, erhält man für die NaOH-Stroh-Pellets 6,2 und die Schnitzel 11,4 MJ um-
setzbare Energie pro Kilogramm. Die so errechneten Werte für die Trockenschnitzel sind ergebnisgleich mit solchen von Pfeffer et al. (7) und (8). Davon gilt die errechnete Energiekonzentration des NaOH-Strohs um einiges niedriger als von Pfeffer et al. (8) und Robb (9) bestimmt, und deckt sich etwa mit Ergebnissen von Kaufmann (4). Unter den hier geschilderten Versuchsbedingungen erbringen 1,8 kg NaOH-Stroh die gleiche Menge an verdaulicher Energie wie 1 kg melassierte Trockenschnitzel.

Nach Abzug der Energie für den Erhaltungsbedarf, läßt sich die darüberhinaus zur Verfügung stehende Menge an verdaulicher Energie ermitteln, die für den Leistungsstoffwechsel herangezogen werden kann. Bei der Strohgruppe entspricht die Energieversorgung in jedem Fall dem 1,5fachen Erhaltungsbedarf. Daraus wird gefolgert, daß unter Bedingungen extremer Futterknappheit weniger angeboten werden kann, ohne die Tiere in eine negative Energiebilanz zu bringen. Worauf es zurückzuführen ist, daß die mit Schnitzel versorgten Schafe gegen Versuchsende extreme Beinschäden aufwiesen, kann nicht mit Sicherheit gesagt werden. Ein Vergleich mit den Bedarfssnormen für Mineralstoffe des ARC (1) und den dem mit Futter verabreichten Mengen zeigt, daß in beiden Gruppen eine gewisse Unterversorgung an Phosphor (NaOH-Stroh relativ 94 %/Schnitzel 82 %) bestand. Daneben war bei den mit Schnitzeln gefütterten Lämmern der Natriumbedarf nur zu 77 % gedeckt, wogegen die Tiere, die NaOH-Stroh-Pellets bekamen, eine zehnfache Übersversorgung mit Natrium hatten.

In diesem Zusammenhang bleibt zu diskutieren, wie sich die Aufnahme von alkali-behandeltem Stroh unter ariden und semiariden Bedingungen verhält, wenn Tränkwässer nicht in ausreichenden Mengen vorhanden ist. Es kann als sicher angenommen werden, daß die Exkretion von überschüssigem Natrium solange kein Problem darstellt, wie ausreichend Wasser zur Verfügung steht. Zu gleichen Ergebnissen kommt Pierce (5) und (6), der eine NaCl-Toleranz von 1,0 bis 1,3 % ermittelte, wenn Schafe, bei hohen Umgebungstemperaturen gehalten, ausschließlich Rauhfutter bekamen.

Geht man von einem Wasserbedarf von 3,0—4,0 kg je Kilogramm verzehrter Trockenmasse aus, wie von Blaxter et al. (2) mitgeteilt, muß etwa ein Aufschlag von 100 % bei erhöhter Salzaufnahme kalkuliert werden. Andererseits erübrigt sich eine Supplementierung mit Natrium, welches bekanntermaßen in vegetativen Pflanzenteilen in nur sehr geringen Konzentrationen vorhanden ist. Soll aufgeschlossenes, rohfaserreiches Pflanzenmaterial nicht
nur als Notfutter eingesetzt werden, sondern in größerem Maße in einer Mastration vertreten sein, ergeben sich unter unseren Bedingungen durchschnittliche tägliche Zunahmen von 126 Gramm, bei einer Schwankungsbreite von 96–175 Gramm. Der in diesem Versuch eingesetzte Proteinträger ist durch Baumwolleextraktionsschrot etc. oder NPN-Verbindungen substituierbar, was auch Farries (3) in Versuchen mit Heidschnucken und Texelschafen nachweisen konnte. Die pro Tier und Tag verabreichte Menge entsprach den ARC-Empfehlungen.

5. Zusammenfassung

Zwei Gruppen zu je 4 Lämmern mit einer durchschnittlichen anfänglichen Lebenmasse von 18,5 kg erhielten 78 Tage entweder NaOH-Stroh-Pellets oder melasierte pelletierte Trockenschnitzel ad-libitum, daneben gleiche Mengen an Heu und Sojaextraktionsschrot. Die durchschnittliche tägliche Zunahme betrug für die Strohgruppe 126 und für die Schnitzelgruppe 194 Gramm.

Summary

In a 78 days feeding trial 2 groups, each of 4 lambs with avarage initial live weight of 18,5 kg, were fed individually either alkali-treated wheat straw or molasses dried beet pulp pellets ad libitum. Constant amounts of hay and soy bean oil meal were provided.

Avarage daily gains were 126 g for lambs fed NaOH-treated wheat straw pellets and 194 g when molasses dried beet pulp pellets were fed. Dietary dry matter required for 1 kg weight gain ranged from 6.1–9.9 and 4.0–5.9 kg for alkali-treated straw and dried beet pulp respectively. For 1 kg dry matter of NaOH-treated straw an energy content of 7.8 MJ digestible energy was determined while molasses dried beet pulp pellets achieved a value of 14.3 MJ.

Extreme leg deformations were noticed with lambs fed on molasses dried beet pulp pellets and this led to discontinuation of the experiments after
78 days. Similar observations were not found with those lambs fed on NaOH-treated straw and they were in good condition during the whole experimental period.

Literaturverzeichnis

Tabelle 1: Weender Rohnährstoffe in der Trockensubstanz der eingesetzten Rationskomponenten.

<table>
<thead>
<tr>
<th>Rationskomponente</th>
<th>Melasierte Trockenschnitzel</th>
<th>NaOH-Stroh-Pellets</th>
<th>Heu</th>
<th>Sojaschrot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trockensubstanz</td>
<td>92,9</td>
<td>91,9</td>
<td>91,6</td>
<td>89,1</td>
</tr>
<tr>
<td>Rohasche %</td>
<td>8,0</td>
<td>12,9</td>
<td>9,8</td>
<td>6,3</td>
</tr>
<tr>
<td>Rohprotein %</td>
<td>11,5</td>
<td>5,0</td>
<td>11,5</td>
<td>48,5</td>
</tr>
<tr>
<td>Rohfett %</td>
<td>1,0</td>
<td>1,1</td>
<td>1,9</td>
<td>1,1</td>
</tr>
<tr>
<td>Rohfasze %</td>
<td>16,6</td>
<td>41,6</td>
<td>32,1</td>
<td>6,6</td>
</tr>
<tr>
<td>N-freie Extr. %</td>
<td>62,9</td>
<td>39,4</td>
<td>44,7</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Tabelle 2: Futteraufnahme und Zunahme an Lebendmasse im Versuchszeitraum.

<table>
<thead>
<tr>
<th>Lamm-Nr.</th>
<th>Aufnahme an Trockensubstanz (g · kg⁻³/₄ · Tag⁻¹) aus:</th>
<th>Lebendmasse Anfang kg</th>
<th>Tägl. Zunahme g/Tag</th>
<th>FutterTS: Zunahme g : g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NaOH-Stroh Pellets</td>
<td>Trockenschnitzel pelletiert, melassiert</td>
<td>Heu</td>
<td>Sojaschrot extr.</td>
</tr>
<tr>
<td>1</td>
<td>75,6</td>
<td>-</td>
<td>3,1</td>
<td>12,1</td>
</tr>
<tr>
<td>2</td>
<td>77,1</td>
<td>-</td>
<td>3,3</td>
<td>13,0</td>
</tr>
<tr>
<td>3</td>
<td>60,0</td>
<td>-</td>
<td>3,0</td>
<td>12,0</td>
</tr>
<tr>
<td>4</td>
<td>74,1</td>
<td>-</td>
<td>3,3</td>
<td>12,8</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>64,2</td>
<td>1,5</td>
<td>12,0</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>53,5</td>
<td>3,1</td>
<td>12,4</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>68,7</td>
<td>2,8</td>
<td>10,9</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>53,9</td>
<td>2,9</td>
<td>11,8</td>
</tr>
</tbody>
</table>
Tabelle 3: Aufnahme und scheinbare Verdaulichkeit der organischen Substanz während der einwöchigen Sammelperiode.

<table>
<thead>
<tr>
<th>Lamm-Nr.</th>
<th>Aufnahme an organischer Substanz (g · kg⁻³/⁴ · Tag⁻¹)</th>
<th>Verdaute org. Substanz (g · kg⁻³/⁴ · Tag⁻¹)</th>
<th>Verdaulichkeit %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gesamtration</td>
<td>NaOH-Stroh-Pellets/Schnitzel</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>119,5</td>
<td>101,2</td>
<td>68,8</td>
</tr>
<tr>
<td>2</td>
<td>105,2</td>
<td>85,4</td>
<td>58,4</td>
</tr>
<tr>
<td>3</td>
<td>110,9</td>
<td>93,4</td>
<td>66,4</td>
</tr>
<tr>
<td>4</td>
<td>100,4</td>
<td>81,9</td>
<td>60,9</td>
</tr>
<tr>
<td>5</td>
<td>74,6</td>
<td>60,7</td>
<td>67,4</td>
</tr>
<tr>
<td>6</td>
<td>82,9</td>
<td>65,5</td>
<td>72,7</td>
</tr>
<tr>
<td>7</td>
<td>73,8</td>
<td>57,3</td>
<td>65,3</td>
</tr>
<tr>
<td>8</td>
<td>85,3</td>
<td>67,5</td>
<td>76,6</td>
</tr>
</tbody>
</table>

Tabelle 4: Errechnete Versorgung mit verdaulicher Energie von wachsenden Lämmern, wenn entweder NaOH-Stroh-Pellets oder pelletierte, melasierte Trockenschnitzel ad libitum angeboten wurden.

<table>
<thead>
<tr>
<th>Lamm-Nr.</th>
<th>Aufnahme an verdaulicher Energie KJ · kg⁻³/⁴ · Tag⁻¹</th>
<th>Energie-Aufnahme Erhaltungsbedarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1238</td>
<td>2,95</td>
</tr>
<tr>
<td>2</td>
<td>1051</td>
<td>2,50</td>
</tr>
<tr>
<td>3</td>
<td>1195</td>
<td>2,85</td>
</tr>
<tr>
<td>4</td>
<td>1096</td>
<td>2,61</td>
</tr>
<tr>
<td>5</td>
<td>1213</td>
<td>2,89</td>
</tr>
<tr>
<td>6</td>
<td>1309</td>
<td>3,12</td>
</tr>
<tr>
<td>7</td>
<td>1175</td>
<td>2,80</td>
</tr>
<tr>
<td>8</td>
<td>1379</td>
<td>3,28</td>
</tr>
</tbody>
</table>