
Advances in fertilizer use to rice, South and East Asia 1958–1978

Von G. Kemmler*)

1. Einleitung

Tab. 1: Welt-Reisproduktion und Anteil Asiens (10, 14)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mio ha</td>
<td>Mio t</td>
<td>Fläche</td>
</tr>
<tr>
<td>Welt</td>
<td>102.6</td>
<td>167.3</td>
<td>143.8</td>
</tr>
<tr>
<td>Asien</td>
<td>96.1</td>
<td>158.0</td>
<td>129.2</td>
</tr>
<tr>
<td>davon</td>
<td>26.8</td>
<td>58.2</td>
<td>36.9</td>
</tr>
<tr>
<td>China</td>
<td>30.1</td>
<td>33.4</td>
<td>39.5</td>
</tr>
<tr>
<td>Indien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fläche</td>
<td></td>
<td></td>
<td>40 %</td>
</tr>
<tr>
<td>Prod.</td>
<td></td>
<td></td>
<td>119 %</td>
</tr>
<tr>
<td>Ertr.</td>
<td></td>
<td></td>
<td>56 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>davon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio ha</td>
<td>167.3</td>
<td>366.7</td>
<td>40 %</td>
</tr>
<tr>
<td>Mio t</td>
<td>1.63</td>
<td>2.55</td>
<td>119 %</td>
</tr>
<tr>
<td>Fläche</td>
<td></td>
<td></td>
<td>56 %</td>
</tr>
<tr>
<td>Prod.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertr.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Dr. Georg Kemmler, Landwirtschaftliche Forschungsanstalt Büntehof
Anschrift: Bünteweg 8, D-3000 Hannover 71
2. Düngung und Ertrag

Neben dem Ausbau der Bewässerung und der Einführung moderner Reissorten ist die Düngung ein wichtiger Faktor zur Ertragssteigerung, in vielen Fällen die Voraussetzung für den Einsatz der neuen Sorten. In einer Vielzahl von Feldversuchen ist nachgewiesen, daß die Mineraldüngung im Bewässerungsreisanbau zu hohen, rentablen Mehrerträgen führt.

2.1. Feldversuche in Indien

Als Beispiel sind in Tab. 2 die durchschnittlichen Ergebnisse von Düngungsversuchen des Indian Council of Agricultural Research (ICAR) angeführt, die in den Jahren 1967 bis 1977 auf Bauernfeldern im ganzen Land durchgeführt worden sind, jährlich über 500 Versuche. Der Mehrertrag je kg Düngemährstoff betrug 9,6 kg Reis/kg N, 13,2 kg Reis/kg P₂O₅, 7,3 kg Reis/kg K₂O oder 10 kg Reis je kg NPK. Bei den Preisverhältnissen des Jahres 1977 (3,59 Rupees/kg N, 3,16 Rupees/kg P₂O₅, 1,34 Rupees/kg K₂O und 740 Rupees/t Reis) ergaben sich folgende Geldmehrerträge je Rupee Düngeraufwand (value/cost ratio): Rs 2,0 für N, Rs 3,1 für P, Rs 4,0 für K, Rs 3,4 für die Einheit NPK.

<table>
<thead>
<tr>
<th>Düngung, kg/ha</th>
<th>Ertrag t/ha</th>
<th>Mehrertrag t/ha</th>
<th>Mehrertrag kg Reis/kg Nährstoff</th>
<th>Ertrags-/ Aufwandsverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>N P₂O₅ K₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 0 - 0 - 0</td>
<td>2.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2) 120 - 0 - 0</td>
<td>4.10</td>
<td>1.15</td>
<td>9.6 (N)</td>
<td>2.0</td>
</tr>
<tr>
<td>3) 120 - 60 - 0</td>
<td>4.89</td>
<td>0.79</td>
<td>13.2 (P₂O₅)</td>
<td>3.1</td>
</tr>
<tr>
<td>4) 120 - 60 - 60</td>
<td>5.33</td>
<td>0.44</td>
<td>7.3 (K₂O)</td>
<td>4.0</td>
</tr>
</tbody>
</table>

2.2. Düngeranwendung in der Praxis

In Indien werden die höchsten Reiserträge im Norden (Punjab: 3,2 t/ha) und im Süden (Tamil Nadu: 3,0 t/ha) erzielt. In diesen beiden Staaten ist die Reis-
<table>
<thead>
<tr>
<th>Staat</th>
<th>Mio. ha Reis</th>
<th>N + P₂O₅ + K₂O kg/ha</th>
<th>Reisertr. t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>4,6</td>
<td>5,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Orissa</td>
<td>4,4</td>
<td>5,0</td>
<td>1,2</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>4,5</td>
<td>8,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Bihar</td>
<td>5,0</td>
<td>7,7</td>
<td>1,4</td>
</tr>
<tr>
<td>West Bengalens</td>
<td>4,9</td>
<td>6,7</td>
<td>1,8</td>
</tr>
<tr>
<td>Kerala</td>
<td>0,9</td>
<td>39,7</td>
<td>2,3</td>
</tr>
<tr>
<td>Andhra Pradesh</td>
<td>3,2</td>
<td>54,3</td>
<td>2,4</td>
</tr>
<tr>
<td>Haryana</td>
<td>0,3</td>
<td>58,6</td>
<td>2,5</td>
</tr>
<tr>
<td>Karnataka</td>
<td>1,1</td>
<td>69,9</td>
<td>2,7</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>2,6</td>
<td>78,2</td>
<td>3,0</td>
</tr>
<tr>
<td>Punjab</td>
<td>0,5</td>
<td>82,0</td>
<td>3,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Land</th>
<th>Mio. ha Reis</th>
<th>N + P₂O₅ + K₂O kg/ha</th>
<th>Reisertr. t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippinen (24)</td>
<td>3,3</td>
<td>22,6</td>
<td>1,6</td>
</tr>
<tr>
<td>Burma (24)</td>
<td>4,8</td>
<td>5,5</td>
<td>1,7</td>
</tr>
<tr>
<td>Thailand (24)</td>
<td>7,0</td>
<td>6,8</td>
<td>1,9</td>
</tr>
<tr>
<td>Indonesien (24)</td>
<td>8,2</td>
<td>26,5</td>
<td>2,4</td>
</tr>
<tr>
<td>Sri Lanka (15)</td>
<td>0,6</td>
<td>70,6</td>
<td>2,4</td>
</tr>
<tr>
<td>W. Malaysia (24)</td>
<td>0,6</td>
<td>68,0</td>
<td>2,8</td>
</tr>
<tr>
<td>China (Taiwan) (30, 28)</td>
<td>0,7</td>
<td>178,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Süd-Korea (21, 4, 33)</td>
<td>1,2</td>
<td>218,0</td>
<td>4,8</td>
</tr>
<tr>
<td>Japan (22)</td>
<td>2,7</td>
<td>286,0</td>
<td>5,7</td>
</tr>
</tbody>
</table>

2.3. Zusammenhang von Düngung und Ertragsniveau

In Abb. 1 sind für die 11 indischen Bundesstaaten und die anderen 9 asiatischen Länder die Reiserträge und die Düngergaben zu Reis aus Tab. 3 gegeneinander aufgetragen. Es ergibt sich eine klare lineare Beziehung. Das ist ein etwas

\[y = 1520 + 45.134 \times x \]
\[r = 0.970 \]
\[r^2 = 0.944 \]

Abb. 1: Düngung von Reis und Reiserträge in 11 indischen Bundesstaaten und 9 asiatischen Ländern 1970/71 – 1973/74 (Quellen wie Tab. 3)

Für die Gegenüberstellung von Reis-Düngung und Reisertrag trifft dies aber nicht zu, da die Erträge noch von einer Vielzahl anderer Faktoren beeinflußt werden, die im unteren Ertragsbereich die Wirkung der Düngung beeinträchtigen (fehlende oder unkontrollierte Bewässerung, Unkraut-, Schädlings-, Krankheitsbefall usw.), während sie im oberen Bereich so optimal gestaltet sind, daß sie die Wirkung der Düngung fördern. Generalisierend läßt sich aus den Daten, die der Abb. 1 zugrunde liegen, ableiten, daß ohne Düngung die Reiserträge in Asien etwa 1,5 t/ha (1,0–2,0 t/ha) betragen, bei 100 kg/ha NPK-Anwendung etwa 3 t/ha, bei 200 kg NPK etwa 4,5 t/ha und bei 300 kg NPK etwa 6 t/ha.

2.4. Historische Entwicklung in 5 Ländern Asiens

Wie die tatsächliche Entwicklung in einigen Ländern abgelaufen ist, soll am Beispiel von Süd-Korea, Japan, Indonesien, Sri Lanka und den Philippinen gezeigt werden. Für diese 5 Länder liegen leidlich zuverlässige Zahlenangaben vor. Sie sind in Tab. 4 zusammengefaßt und in Abb. 2 graphisch dargestellt.

Es fällt auf, daß die Länder mit hohen Reiserträgen (Korea, Japan) auch höhere Zuwachsraten haben als Länder mit niedrigen Erträgen und geringer Düngeranwendung.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ertrag* t/ha</td>
<td>NPK kg/ha</td>
<td>Ertrag* t/ha</td>
<td>NPK kg/ha</td>
<td>Ertrag* t/ha</td>
<td>NPK kg/ha</td>
<td>Ertrag* NPK kg/ha(A)</td>
</tr>
<tr>
<td>Süd-Korea</td>
<td>2,9</td>
<td>95</td>
<td>4,2</td>
<td>147</td>
<td>6,4</td>
<td>264(35)</td>
<td>3500</td>
</tr>
<tr>
<td>Japan</td>
<td>4,5</td>
<td>204</td>
<td>5,7</td>
<td>293</td>
<td>6,0</td>
<td>299(36)</td>
<td>1500</td>
</tr>
<tr>
<td>Indonesien</td>
<td>1,7</td>
<td>5</td>
<td>1,9</td>
<td>8</td>
<td>2,8</td>
<td>54(36)</td>
<td>1100</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>1,5</td>
<td>15</td>
<td>2,4</td>
<td>48</td>
<td>2,3</td>
<td>72(7)</td>
<td>800</td>
</tr>
<tr>
<td>Philippinen</td>
<td>1,1</td>
<td>7</td>
<td>1,5</td>
<td>10</td>
<td>1,9</td>
<td>27(16)*</td>
<td>800</td>
</tr>
</tbody>
</table>

* Dreijahres-Mittel, FAO-Zahlen
** 1978

Mittel 1540 78 20

(Quellen wie Tab. 4)

2.4.1. Süd-Korea

2.4.2. Japan

Abb. 3: Reisertrag und Düngeanwendung zu Reis in Japan (diverse Quellen)

Tab. 5: Mineraldüngeranwendung zu Reis in Japan (22)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Nährstoffangaben in kg/ha</th>
<th>Nährstoffverhältnis N : P₂O₅ : K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>1951-55</td>
<td>69</td>
<td>100</td>
</tr>
<tr>
<td>1956-65</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>1966-75</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

2.4.3. Verbesserung der N-Wirkung durch Phosphat- und Kalidüngung

Auch in Süd-Korea hat die PK-Düngung zu Reis in den vergangenen 20 Jahren stark zugenommen, bei Kali von 0 auf 61 kg K₂O/ha (vgl. Tab. 6). Allgemein gilt für die Länder Ostasiens mit hohen Reiserträgen (Japan, Süd-Korea, China), daß großer Wert darauf gelegt wird, die hohen Gaben an Stickstoff durch ausreichende Zufuhr von Phosphat und Kali auszugleichen. Die Reisbauern sind bestrebt, die Nährstoffe über die Düngung zurückzugeben, die dem Boden durch die Ernte entzogen wurden, bei 6 t Reis/ha etwa 100 kg N, 50 kg P₂O₅, 160 kg K₂O (34). Ein Teil der Nährstoffe (in China der größere Teil) wird über die organische Düngung eingebracht, der andere Teil über die Mineraldüngung. Die Stickstoffdüngung dient der Ertragssteigerung, die Düngung mit P oder K der Stabilisierung der hohen Erträge und der Verbesserung der Bodenfruchtbarkeit (35).

Tab. 6: NPK-Düngung zu Reis in einigen Ländern Asiens, 1958–1968–1977 (kg/ha)
(Quellen wie Tab. 4)

<table>
<thead>
<tr>
<th></th>
<th>1958</th>
<th>1968</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P₂O₅</td>
<td>K₂O</td>
</tr>
<tr>
<td>Südkorea</td>
<td>94</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Japan</td>
<td>85</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Indonesien</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Philippinen</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

* 1978

In den anderen asiatischen Ländern, mit Reiserträgen zwischen 1,9 und 2,9 t/ha, wurde zunächst die N-Düngung forciert, während man die anderen Nährstoffe nur dort zur Düngung empfahl, wo ein akuter Mangel auftrat. Es wurde also Raubbau am Nährstoffvorrat des Bodens betrieben, und es mehren sich die Fälle, in denen die Stickstoffdüngung nicht mehr die erwartete Wirkung zeigt, z.B. wegen des Mangels an Phosphat (8), Kali (20), Schwefel (6), Zink und anderen Elementen (31). Auf den betroffenen Standorten sind spektakuläre Mehrerträge möglich, wenn der fehlende Nährstoff durch Düngung zugeführt wird (35).
2.4.4. Übrige Länder

3. Reis/Düngemittel-Preisverhältnis und Düngungsintensität

<table>
<thead>
<tr>
<th>Land</th>
<th>Reis (paddy)</th>
<th>N (Harnstoff)</th>
<th>P<sub>2</sub>O<sub>5</sub> (Superphosph.)</th>
<th>K<sub>2</sub>O (Chlorkalium)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1968 (19)</td>
<td>1972 (33)</td>
<td>1977 (36)</td>
<td>1968 (19)</td>
</tr>
<tr>
<td>Japan</td>
<td>29</td>
<td>42</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>Südkorea</td>
<td>11</td>
<td>22</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Indonesien</td>
<td>4</td>
<td>19</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>China (Taiwan)</td>
<td>11</td>
<td>12</td>
<td>18*</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>10</td>
<td>12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>11</td>
<td>13</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Philippinen</td>
<td>9</td>
<td>10</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Indien</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

* US Embassy. ** Rohrophosphat

Auffällig sind die starke Gefälle des Reispreises zwischen Japan einerseits und Indien/Thailand am anderen Ende der Skala sowie der Anstieg des Reispreises zwischen 1968 und 1976/77. Er war in Indonesien, Japan und Südkorea am stärksten. In diesen Ländern gab es auch den höchsten Zuwachs der Reiserträge (Tab. 4/Abb. 2). Die Düngemittelpreise unterscheiden sich nicht so stark wie die Reispreise. Sie liegen in einigen asiatischen Entwicklungsländern niedriger als in Japan infolge der Subventionspolitik der jeweiligen Regierungen. Auch die
Düngemittelpreise sind zwischen 1968 und 1976/77 stark gestiegen. Ihr Verhältnis zum Reispreis hat sich aber kaum geändert (Tabelle 8). Es ist sogar im Schnitt etwas günstiger geworden.

Tab. 8: Preiswürdigkeit von Düngemitteln, dargestellt in kg Paddy-Reis, die zur Bezahlung von 1 kg N + P₂O₅ + K₂O notwendig sind (Quellen wie Tab. 7)

<table>
<thead>
<tr>
<th>Land</th>
<th>1968</th>
<th>1972</th>
<th>1976/77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>S.-Korea</td>
<td>1.2</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Indonesien*</td>
<td>3.8</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>China (Taiwan)</td>
<td>2.0</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1.1</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>0.9</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Philippinen</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Indien</td>
<td>4.1</td>
<td>3.0</td>
<td>3.2</td>
</tr>
<tr>
<td>Thailand</td>
<td>4.9</td>
<td>4.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* N + P₂O₅

In Indien und Thailand brauchte der Bauer 1976/77 nur noch 3,2 bzw. 3,5 kg Paddy-Reis aufzuwenden, um 1 kg NPK zu bezahlen, gegenüber 4,1 bzw. 4,9 kg im Jahre 1968. Trotzdem stehen diese Länder weitaus ungünstiger da als alle anderen, die in Tabelle 8 aufgeführt sind, besonders im Vergleich zu Japan und Süd-Korea. Wie sich die Preiswürdigkeit der Düngemittel auf die durchschnittliche NPK-Anwendung zu Reis ausgewirkt hat, zeigt Abbildung 4 (Zahlen von Tab. 3 und Tab. 8). Vom Preisverhältnis her leuchtet es ein, daß die japanischen und

![Diagramm](image_url)

Abb. 4: NPK-Anwendung zu Reis und Reispreis: Düngemittelpreis-Verhältnis (1972)
koreanischen Reisbauern sich einen hohen Düngeraufwand leisten können, während die Düngeanwendung in Thailand relativ sehr teuer und entsprechend niedrig ist. (Falls 1 kg NPK einen Mehrertrag von 10 kg Reis entspricht, aber schon 4,8 kg Reis kostet, errechnet sich ein Ertrags/Aufwands-Verhältnis – V/C ratio – von lediglich 2,1). Dagegen dürfte sich in den Philippinen und besonders in Sri Lanka ein höherer Düngereinsatz gut rentieren. Wenn 1 kg NPK nicht mehr kostet als 1 kg Reis, ergibt sich ein ausgesprochen günstiges Ertrags/Aufwands-Verhältnis von 10:1.

4. Organische Dünger – Mineraldünger

In allen Ländern der Region empfiehlt der Beratungsdienst die Anwendung von organischen Düngern wie Stallmist, Kompost, Stroh und Gründüngungspflanzen.

4.1. China

Am stärksten machen hiervon die Reisbauern Chinas Gebrauch. Nach den Informationen einer FAO-Studiengruppe, die China 1977 bereist hat, entspricht die in organischem Material zugeführte Nährstoffmenge einer durchschnittlichen Gabe von 64 kg N, 39 kg P₂O₅, 74 kg K₂O je ha (12). Darüber hinaus wird in der Volksrepublik China in steigendem Umfang Mineraldünger angewendet. Die FAO schätzt den Verbrauch je ha für 1976 auf 35 kg N, 11 kg P₂O₅, 3 kg K₂O. Zusammen mit der organischen Düngung ergibt sich für China eine mittlere Düngungsintensität von 99 kg N, 50 kg P₂O₅, 77 kg K₂O/ha. Wenn man berücksichtigt, daß im Schnitt etwa 1,5 Ernten/Jahr erzielt werden, ermäßigten sich die Nährstoffgaben pro Kultur auf 66 kg N, 33 kg P₂O₅, 51 kg K₂O/ha. Dieser Düngeraufwand bezieht sich zwar auf alle Feldfrüchte, Obst- und Gemüsekulturen, dürfte aber auch für Reis ungefähr zutreffen. Ein Düngungsniveau von 150 kg NPK/ha bei mittleren Reiserträgen von 3,6 t/ha (Tab. 1) entspricht den Verhältnissen in den übrigen asiatischen Ländern (vgl. Abb. 1).

4.2. Andere Länder

In allen anderen Ländern wird weniger organischer Dünger angewendet. In Japan betrugen 1971–1974 die Gaben zu Reis etwa 3,25 t Kompost und 0,6 t Stroh mit einem geschätzten Nährstoffgehalt von 20 kg N, 7 kg P₂O₅, 22 kg K₂O/ha, wie aus den Veröffentlichungen des Landwirtschaftsministeriums über die Produktionskosten von Reis hervorgeht (vgl. Abb. 3).

Besonders ungünstig ist die Situation dort, wo das Stroh an das Vieh verfüttert und der Dung getrocknet und als Brennmaterial verwendet wird, wie in weiten Teilen von Indien, Pakistan und Bangladesh. Reisstroh enthält etwa 0,6% N, 0,1–0,2% P₂O₅, 0,9–2,25% K₂O (1,29). Es stellt also eine wertvolle Kaliquelle dar. Allerdings kann das im Stroh enthaltene Kalium durch Regenwasser leicht ausgewaschen werden, während Stickstoff und Phosphat in organischer Bindung
vorliegen und erst nach mikrobieller Zersetzung des Strohs frei werden. Rechnet man einmal nur mit einem K₂O-Gehalt von 1% im Stroh zum Zeitpunkt der Düngung, dann entspricht eine Gabe von 3,5 t Stroh/ha einer Kalidüngung von 35 kg K₂O/ha. 3,5 t Stroh dürften bei einer Reisernte von 3 t/ha anfallen, dem Durchschnittsertrag im Staate Tamil Nadu/Indien (Tab. 3). Dort betrug die Mineraldüngung zu Reis im Mittel der Jahre 1971/72–74/75 etwa 47 kg N, 16 kg P₂O₅, 15 kg K₂O/ha (5). Sie wäre durch Verwendung des Strohs für die Düngung um etwa 21 kg N + 5 kg P₂O₅ + 35 kg K₂O erhöht worden. Tatsächlich errechnet sich aus der Verwendung von Kompost (9) für das Ackerland von Tamil Nadu (ohne Grün-düngungsflächen) 1974/75 eine durchschnittliche Gabe von 10 kg N, 8 kg P₂O₅ + 14 kg K₂O/ha, immerhin 40% der Kalimenge, die in 3,5 t Stroh enthalten ist.

Für ganz Indien berechnet (total cropped area minus green manured area), ergibt sich eine durchschnittliche Nährstoff-Anwendung im Kompost (rural compost plus urban compost) für 1974/75 von etwa 7 kg N/ha, 5 kg P₂O₅/ha, 10 kg K₂O/ha.

Das ist nur 1/5 der NPK-Düngung in Form von organischen Stoffen in China (auf 1,5 Ernten/Jahr berechnet). In Indien werden große Anstrengungen unternommen, andere Brennstoffquellen zu erschließen, wie schnellwüchsige Holzarten oder Biogas aus der anaeroben Vergärung organischer Abfallstoffe, um vom Kuhdung als Brennmaterial zu kommen und ihn als Dünger einsetzen zu können.

5. Mögliche weitere Fortschritte

Mit 6 t/ha ist das gegenwärtige Ertragsniveau in Japan und Korea so hoch, daß man nur noch eine ganz langsame Steigerung erwarten sollte. Dennoch sind weitere hohe Wachstumsraten nicht auszuschließen, wie die Erfahrungen der letzten Jahre zeigen. Höhere Ernten bedeuten höheren Nährstoffentzug. Unabhängig davon, ob die Ertragssteigerung auf leistungsfähigere Sorten, bessere Anbaumethoden, Krankheits- und Schädlingsbekämpfung oder andere Maßnahmen zurückzuführen ist, wird der höhere Nährstoffentzug durch entsprechende Düngergaben zu kompensieren sein. In Süd-Korea z.B. betragen die durchschnittlichen Empfehlungen des Office of Rural Development für die neuen Reisorten 140–150 kg N/ha, 80–90 kg P₂O₅/ha und 100 kg K₂O/ha (etwa 330 kg NPK/ha).

In China, wo die Entwicklung der Landwirtschaft Vorrang hat und die Möglichkeiten der Verwendung von organischem Material für die Düngung bereits optimal genutzt werden, ist mit einer weiteren Erhöhung des Mineraldünger-Einsatzes im Reisanbau zu rechnen.

In den anderen Ländern wird der Fortschritt davon abhängen, wie schnell die Hindernisse überwunden werden können, die einer Steigerung der Reiserträge durch den Einsatz von Düngemitteln im Wege stehen (z. B. mangelhafte Lagerung- und Verteilungsmöglichkeiten, unzureichende Verfügbarkeit von Krediten, ungünstiges Verhältnis von Reispreis/Düngemittelpreis, Ungewißheit über den tatsächlichen Reispreis zur Erntezeit, mangelnde Bewässerungskontrolle, fehlende Fach-

Daß hohe Erträge in Indien erzielbar sind, zeigen nicht nur die Ergebnisse von Tausenden von Feldversuchen (Tab. 2), sondern auch die Daten der National Demonstrations und der All India Crop Competitions, an denen sich jedes Jahr fortschrittliche Bauern beteiligen (Tab. 9). Diese Ergebnisse berechtigen zu der Hoffnung, daß die von den Planern gesteckten Produktionsziele realistisch sind.

Tab. 9: Reis. Durchschnittserträge der National Demonstrations und Höchsterträge der All India Crop Competitions (27)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>t/ha</th>
<th>Jahr</th>
<th>t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968–69</td>
<td>5.95</td>
<td>1965–66</td>
<td>9.48</td>
</tr>
<tr>
<td>1969–70</td>
<td>5.69</td>
<td>1970–71</td>
<td>15.86</td>
</tr>
</tbody>
</table>
6. Zusammenfassung

Beim Vergleich der Situation in verschiedenen Ländern Asiens bzw. in den Reis anbauenden Bundesstaaten Indiens fällt ein enger Zusammenhang auf zwischen Ertragsniveau und Düngeranwendung zu Reis (als Indikator der Intensität des Reisanbaus). In Staaten mit minimaler oder fehlender Düngung liegt der Durchschnittsertrag bei 1,5 t/ha (1–2 t/ha), dort wo 60–100 kg NPK/ha angewendet werden, etwa bei 2,4–3 t/ha, in den Ländern mit Düngergaben um 300 kg NPK/ha bei 6 t/ha und mehr.

Für die Zukunft ist mit weiteren schnellen Ertragssteigerungen zu rechnen, vor allem in Gebieten, in denen heute bereits mehr als 2,5–3 t/ha geerntet werden. Auf Grund der Erfahrungen der Vergangenheit ist anzunehmen, daß sich Reisdüngung und Reiserzeugung parallel entwickeln werden.

Der Autor dankt Dr. P. Schäfer für die Verrechnung der Daten (Tab. 3, Abb. 1) und Frl. K. Sennholz für das Zeichnen der Grafiken.

Summary

More than 90 per cent of the world rice production originates from the Asian countries. Rice yields and rice fertilization have considerably increased in these countries over the past two decades. The highest increase was observed in Korea and Japan where the average yield in 1976/78 was slightly above 6 t/ha at mineral fertilizer rates to rice between 260 and 300 kg/ha N + P₂O₅ + K₂O (NPK). A marked increase was also observed in other countries, e.g. Indonesia, China and India. Due to the originally low yield levels the production in these countries has, however, not risen above the 3 t/ha mark with the exception of China where the average yield reached approx. 3,6 t/ha at an estimated NPK consumption of 150 kg/ha, mostly in the form of organic manures.

When comparing the situation in the different Asian countries or in different rice-growing federal states of India, a close relationship is observed between yield
and fertilizer input (as an indicator of the intensity of rice cultivation). In states with very low or no fertilization at all the average yield attains only 1.5 t/ha (1–2 t/ha), whereas the production is approx. 2.4–3 t/ha at fertilizer rates between 60–100 kg NPK/ha and 6 t/ha or more in countries where approx. 300 kg NPK/ha are applied.

The rice-fertilizer price ratio plays an important role among the factors influencing the level of fertilizer application. This ratio is particularly unfavourable in Thailand and India and particularly favourable in Japan and South Korea. It has improved in most countries between 1968 and 1976/77.

Further rapid yield increases have to be expected in the future, in particular in areas where at present more than 2.5–3 t/ha are attained. The experiences of the past allow the assumption that the development of rice fertilization and rice production will run parallel.

Literaturverzeichnis

4. ASPAC Food and Fertilizer Technology Center, 1972: Seminar «Economics on fertilizer use». Taipei/Taiwan
10. FAO Production Yearbook, 1971: Vol. 25, Rom/Italien
11. FAO, 1977: Annual fertilizer review. FAO Statistics Series No. 19, Rom/Italien
17. Ismunadjji, M. and S. Partohardjono, 1979: Recent research on potash application in lowland rice, als Manuskript vervielfältigt, Djakarta/Indonesien
22. Min. of Agric. & Forestry, Japan, verschiedene Jahre: Survey on production cost of rice, Tokyo/Japan
25. Rajendra Prasad, 1977: Response of field food crops to different fertilizers in India. FAO/SIDA Seminar, Lahore/Pakistan
27. Sodhi, A.J.S., 1979: Agricultural policy and fertilizer use in India. Fertilizer News 24, 1, 46–51
28. Su, N.R., 1975: Fertilizer applications to rice in Taiwan. ASPAC Food and Fertilizer Technology Center, Extension Bull. No. 60, Taipei/Taiwan
33. von Uexküll, H.R., 1975: Recent fertilizer problems in Asia. ASPAC Food and Fertilizer Technology Center, Extension Bull. No. 59, Taipei/Taiwan

108