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Abstract

Biochar, the product obtained by the pyrolysis of organic materials with little or no available air, acts as a long-
term recalcitrant source of organic carbon when applied to soil. In the present study an in-farm method has been
standardized for the pyrolytic conversion of four indigenous biomass resources into biochar. The biomass feedstocks
viz. bovine bone (BB), coconut shell (CS), rubberwood (RW) and water hyacinth (WH) were dried and subjected
to proximate, ultimate, biochemical analysis and were subjected to slow pyrolysis (563 °C). The biomass feedstocks
showed an ash content ranging from 1.04-61.23 %, moisture content of 8.46-20.83 %, volatile matter of 27.92-74.92 %
and fixed carbon of 1.17-18.75 %. The biochar yield was maximum for BB (56.65 %). Scanning electron microscope
analysis of the biochar samples showed aligned honeycomb like groups with the greatest porosity (3.90-8.43 µm) in
WH biochar. X-ray spectroscopy (EDX) analysis showed highest number of elements in WH biochar. The electrical
conductivity, bulk density and water holding capacity of the biochars ranged from 102.56-7569.03 µs cm−1, 16.83-
72.58 g cm−3 and 57.89-431.17 %, respectively. The Fourier Transform Infrared spectrometer (FTIR) analysis of
biochar samples showed several functional groups which help them to act as a good soil conditioner. Characteristics
of the biochar produced from these biomass wastes revealed its potential as good soil conditioners in crop production
systems.
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1 Introduction

Climate change has now become a global concern owing
to elevated levels of greenhouse gases (GHGs) in the atmos-
phere (Maucieri et al., 2017). Since 1970, CO2 emissions
have increased by about 90 %, with emissions from the com-
bustion of fossil fuel and industrial processes contributing
about 78 % of the total GHG emissions increase from 1970
to 2011 (Boden et al., 2017). Agriculture, deforestation, and
other land-use changes have been the second-largest contrib-
utors (IPCC, 2014). Mitigation of CO2 emission through C
sequestration proved to be a viable solution and is being tried
successfully in many developing countries (Lehmann et al.,
2006). Use of biochar as a soil amendment for sequestering
C is considered to be a robust choice to offset the C emis-
sions (Brassard et al., 2019).
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Biochar is a fine grained, black solid carbon-rich (70-
80 %) porous substance produced from pyrolysis of biolo-
gical materials in the absence of oxygen at relatively low
temperature (Lehmann et al., 2002). Physicochemical char-
acteristics of biochar such as high porosity, change capacity,
high content of plant available nutrients and sometimes high
pH makes it a preferred soil additive in degraded soils of the
tropics (Major et al., 2010) as well as more fertile soils in the
temperate regions (Novak et al., 2009; Laird et al., 2010).

Biochar when applied in soil can act as a recalcitrant
source of organic carbon which remains for long time (Sun
et al., 2020). Biochar application to the soil has been re-
ported to boost soil fertility and improve soil quality result-
ing in better crop yields (Hussain et al., 2016). Soil bene-
fits include improving soil structure and retention of soil
moisture, decreasing soil acidity (Spokas et al., 2012), im-
proving cation exchange capacity (CEC), retaining nutrients,
changing biological community composition, and stimulat-
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ing soil microbial populations and functions (Pietikäinen et
al., 2000).

Biochar application has shown to have positive effects on
beneficial soil microorganisms e.g. increased levels of biolo-
gical N2 fixation by rhizobia in legumes and improved activ-
ity of plant growth promoting organisms in the rhizosphere
and high levels of mycorrhizal colonization (Hammer et al.,
2015; Egamberdieva et al., 2016).

Biochar can be produced from a wide range of biomass
wastes such as wood chips (James et al., 2017), rice straw
(Wu et al., 2009), hazelnut shells (Olgun et al., 2011), meat
bone meal (Vassilev et al., 2010), municipal solid waste
(Ramzan et al., 2011) and aquatic biomass such as microal-
gae (Roberts et al., 2015). But the composition and quality
of the biochar as a soil amendment depends upon the type of
feedstock used and the condition under which it is produced
(McLaughlin et al., 2009).

In rural villages of Kerala, India, the accumulation of bio-
mass resources such as bovine bone, coconut shell, rubber-
wood cuttings and water hyacinth poses perennial waste bur-
den to the environment. Kerala generates approximately
38,100 tonnes of slaughter wastes per annum form its
units which hardly have any waste disposal facilities (En-
vis Centre, 2022). Yet another concern is the invasive water
hyacinth which adversely affects the aquatic environment of
this region (Vaidyanathan & Induchoodan, 2017). Further,
coconut shell, rubberwood etc form bulk waste in Kerala
(KSWNP, 2020) which often crosses the manageable limit.
Therefore, an appropriate strategy with a minimal invest-
ment to transform these wastes into useful products is the
need of the time.

The present study aims to 1) device an in-farm method for
the pyrolytic conversion of indigenous biomass resources in
to biochar which otherwise would have been waste burden
to the environment, 2) characterisation of four different feed-
stocks used in the study, 3) characterisation of the four dif-
ferent biochars produced through pyrolysis for its structure
and properties with an aim to use it as an additive in crop
production systems.

2 Materials and methods

2.1 Collection, processing and characterisation of feed-
stock

The feedstocks bovine bone (BB), coconut shell (CS),
rubberwood (RW) and water hyacinth (WH) for biochar pro-
duction were collected from Ernakulam (9°53’56.79” N and
76°22’5.05” E) District, Kerala, India. BB collected from
local slaughter houses were buried in pits of 90× 90× 90 cm

size for a month till the adherent tissues were completely dis-
integrated. The bones were then dug out, dried and chopped
for biochar production. CS collected from a coconut pro-
cessing unit was broken into small pieces in order to accom-
modate a large quantity in the drum used for pyrolysis. RW
was collected from 25 years old plants that stopped its latex
yield, chopped into 10-20 cm pieces. WH feedstock was pre-
pared by collecting water hyacinth (Eichhornia crassipes)
from local water bodies and sun-dried for one month to elim-
inate the water content completely. A sub-sample from each
dried and pulverised feedstock was subjected to proximate
analysis for the determination of ash content (AC), moisture
content (MC), volatile matter (VM) and fixed carbon (FC).
Analysis of AC, MC and VM were done as replicates follow-
ing ASTM E830-87, ASTM E871-82 and ASTM E872-82
respectively (ASTM E830-87,1996; ASTM E871-82, 2006;
ASTM E872-82, 2019). The FC was calculated from the
formula:

FC (wt.%) = 100 [V M + AC] (wt.%) (1)

Ultimate analysis was performed to determine the ele-
mental composition of carbon (C), hydrogen (H), nitrogen
(N) and oxygen (O) in feedstocks. For this, powdered feed-
stocks were analysed using Elementar Vario EL III elemental
analyser. The percentage of O was obtained from (Schmidt
et al., 2016):

O (wt.%) = 100 − [Ash + C + H + N + S ] (wt.%) (2)

Calorific values of the feedstocks were determined using a
bomb calorimetric method according to JIS M8814 (Japan-
ese Industrial Standard, 2003).

The percentage of cellulose, hemicelluloses and lignin
were determined as described by Goering & Van Soest
(1970). The extractives of alcohol-benzene, hot and cold-
water solubility were determined from ASTM D1110-84 and
ASTM D1107-96, respectively (ASTM D1110-84, 2013;
ASTM D1107-96, 2013).

2.2 Production of biochar

A simple in-farm improvised method replacing a reactor
(Venkatesh et al., 2010) making use of slow pyrolysis (400-
500 °C) technique was setup with certain modifications. Dis-
carded cylindrical oil drums (91× 56 cm; 200 L capacity)
with upper and lower sides intact were procured from local
market and modified for the use as a charring kiln. A single
square shaped opening (20× 20 cm) was made at the centre
on topside of the drum for loading the feedstocks. On the
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bottom side of the oil drum 35 holes measuring 4 cm2 were
made with a 5 cm2 hole at the centre covering about 20 %
of the bottom side of the drum. The kilns were loaded with
each feedstock separately. The feedstocks placed at the ex-
treme bottom of the kiln were slightly sprayed with diesel
to facilitate initial ignition. The fully loaded kilns were kept
over cement bricks of 15 cm height placed in circular pits
(96 cm dia; 30 cm depth) taken in ground having a soil slant
at one end (30 cm width) for feeding the firewood during ig-
nition. The bottom and space around the kiln was packed
with firewood and coconut husk and ignited for 35-40 min
at approximately 563 °C and the temperature was measured
using a dual laser IR thermometer. After the reduction of the
thick smoke, a metal sheet (30× 30 cm) was placed partially
over the top hole of the kiln to control flow of air into the
drum so that the feedstocks are not burned to ashes, At the
end of the burning process, the top hole was closed com-
pletely and sealed with soil-clay (1:1 v/v) slurry and kept
overnight. The drums when cooled down were taken out
and harvested for biochar. Three batches of biochar per
feedstock were prepared. For the characterisation of each
biochar, all the three batches were pooled together and sub-
samples were taken from it. The harvested sub- samples of
biochar were taken to the laboratory for further analysis.

The yield of biochar (Y1 ) was determined as the ratio
of the produced biochar weight to the weight of pyrolysis
feedstocks and was calculated using the formula:

Y1 ( %) =
m1
m2

X100 (3)

where m1 is the weight of biochar, and m2 is the weight
of feedstock samples.

2.3 Physical and chemical characterisation of biochar

Micromorphology of the biochar samples were exam-
ined using a scanning electron microscope (SEM, Make:
JEOL JSM-6390LA, Japan) equipped with an energy dis-
persion X-ray spectroscopy (EDX). Elemental analysis of
the biochar samples were performed using EDX and the ele-
mental weight ( %) was recorded.

The pH and EC were measured in a suspension of biochar
in deionized water (1:10 w/v) using a multitester (Eutech
PC2700, Eutech Instruments, Singapore). The EC was
presented in µs cm−1. For bulk density, a glass cylinder
(25 ml) was filled to specified volume with biochar powder
(40 mesh), dried in a hot air oven at 80 °C overnight. The
cylinder was tapped for 2 min to compact the biochar and the
bulk density was calculated as the ratio between the weight
(g) of the dried biochar and volume (ml) of the biochar and
expressed as g cm−3 (Ahmedna et al., 1997). For the de-

termination of water holding capacity, 20 g of dried biochar
sample was taken in a plastic container and placed in a dish
of water. This was allowed to saturate for 6 h. The plastic
container was then taken out from the water and covered
with a thin polythene cover to prevent loss of water by evap-
oration. It was then hanged on a stand overnight to allow
drainage. All samples were allowed to drain for the same
amount of time. The biochar was carefully transferred from
the plastic container to a pre-weighed container (M1) and the
total weight of moist biochar with container (M2) was taken.
The samples were then dried in an oven at 105 °C till con-
stant weight (M3) is recorded. The water holding capacity
was calculated following the formula (Dugan et al., 2010).

Water holding capacity ( %) =
M2 − M3
M3 − M1

x100 (4)

The chemical functional groups present in the biochar
samples were investigated by Fourier transform infrared
spectroscopy (FTIR) (Avatar 370 Thermo Nicolet Corpora-
tion, USA) in the range of 4000-400 cm−1 at a resolution of
4 cm−1 with an interferogram of 32 scans (Gomez-Serrano et
al., 1999). FTIR analysis gives an idea about the chemical
composition of the biochar.

2.4 Statistical Analysis

The data was analysed by analysis of variance (ANOVA)
in order to find the significant variation among different
properties of feedstocks and biochar. The means were sep-
arated using Tukey’s Honestly Significant Difference (HSD)
test with a significant level P < 0.05, n = 3 using SYSTAT 9.

3 Results

3.1 Proximate, ultimate and biochemical analysis of bio-
mass feedstocks used for biochar production.

The results of proximate, ultimate, biochemical analysis
and HHV values of the feedstocks used for biochar produc-
tion are presented in Table 1. The results of proximate analy-
sis showed that the ash percentage ranged between 1.0 and
61.2 % whereas, moisture, volatile matter and fixed carbon
ranged between 8.5-20.8 %, 27.9-74.9 % and 1.2-18.7 % re-
spectively.

The results of ultimate analysis revealed that the carbon
percentage ranged between 23.50 and 46.50 % whereas, hy-
drogen ranged between 0.31-3.43 % and nitrogen and oxy-
gen ranged between 4.53-7.07 and 7.31-52.18 % respec-
tively. Among the biomass feedstocks, CS had a higher C
while BB had the least. Conversely, BB recorded the highest
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Table 1: Proximate, ultimate and biochemical analysis of biomass feedstocks used for biochar production.

Parameters BB CS RW WH

Proximate analysis
Ash (%) 61.2± 0.02a 22.2± 0.02b 1.0± 0.01d 17.6± 0.02c

Moisture (%) 9.7± 0.01b 9.1± 0.01c 8.5± 0.02d 20.8± 0.03a

Volatile matter (%) 27.9± 0.02d 52.7± 0.03b 74.9± 0.01a 42.8± 0.03c

Fixed carbon (%) 1.2± 0.01d 16± 0.01b 15.6± 0.01c 18.8± 0.02a

Ultimate (elemental) analysis*
Carbon (%) 23.50 46.50 38.46 32.53
Hydrogen (%) 3.43 0.31 1.25 1.90
Nitrogen (%) 4.53 5.88 7.07 5.84
Oxygen (%) 7.31 25.07 52.18 42.10
Sulphur (%) ND ND ND ND
O/C 0.31 0.54 1.36 1.29
H/C 0.15 0.01 0.03 0.06
Calorific value (MJ kg-1)
HHV 7.89 23.69 20.66 18.64

Biochemical analysis
Cellulose (%) ND 35.2± 0.43b 35.4± 0.41b 57.9± 0.45a

Hemicellulose (%) ND 26± 0.38a 25.5± 0.35a 25.6± 0.28a

Lignin (%) ND 36.7± 0.35b 39.9± 0.45a 2.1± 0.21c

Extractives (%) ND 2.5± 0.06b 0.5± 0.04c 14.5± 0.35a

Values are mean ± standard deviation of three replicates. Mean in each line with different letters are significantly different
(P < 0.05) by Tukey’s HSD. ND, not detected
* Results based on one time analysis.
BB-Bovine Bone, CS- Coconut Shell, RW-Rubberwood, WH- Water hyacinth

H and CS the least. RW and WH showed the highest N and
O respectively while BB the least.

The calorific value (HHV) of the feedstocks ranged
between 7.89 and 23.69 MJ kg−1 with highest in CS and low-
est in BB.

The feedstocks analysed in the present study had the cel-
lulose, hemicelluloses and lignin ranging between 35.20-
57.97, 25.47-26.00 and 2.07-39.97 % respectively. The per-
centage of extractives differed with biomass feedstocks that
ranged between 0.53-14.53 % which was highest in WH.

3.2 Biochar production and characterisation

The char yield from feedstocks ranged between 26.55-
56.65 %. Maximum values were obtained for BB
(56.65±2.92 %) followed by WH (35.44±4.70 %), CS
(32.84±3.36 %) and RW (26.55±2.89) under the present
pyrolytic condition (Fig. 1).

The SEM images of the biochar samples are shown in
Fig. 2. Pore size was measured using an image processing
software ImageJ. The biochar porous structure showed vari-
ous proportion and shapes. Biochar derived from WH
showed the greater porosity with pore size measuring from

Fig. 1: Biochar yield from four feedstocks. (A) Bovine Bone
(BB), (B) Coconut Shell (CS), (C) Rubberwood (RW), (D) Wa-
ter Hyacinth (WH). Mean with different letters are significantly
different (P < 0.05) by Tukey’s HSD.

3.90-8.43 µm with uniform distribution of pores. The CS
and RW biochars had a pore size ranging from 3.77-7.52 µm
and 2-4.45 µm respectively. From the external aspect, the
pores of CS have some large pores interconnected with small
pores. Whereas RW has a smooth surface and the pores
are few in number and are not found to be cross-linked.



N. M. Paul and V. S. Harikumar / J. Agr. Rural Develop. Trop. Subtrop. 123 – 1 (2022) 161–173 165

Biochar produced from BB had the least porosity with pore
size around 333.20-995.09 nm.

Fig. 2: Scanning electron micrographs (SEM) of different
biochar samples. (A) Bovine Bone (BB) at 7KX, (B) Coconut
Shell (CS) at 0.5KX, (C) Rubberwood (RW) at 3.5KX, (D) Wa-
ter Hyacinth (WH) at 1.5KX magnifications.

The EDX of the biochars detected 9 elements in BB,
11 elements in CS, 10 elements in RW and 16 elements in
WH (Table 2). The elements such as P, Ca and Na showed
a relatively high weight percentage in BB. The elemental
weight of Fe was more in CS while K and Mg was high in
RW. Si and Al had a higher value in WH. Further, S, Cu, Cl
and Ti were detected only in WH.

The properties of biochar derived from waste biomass
such as pH, EC, bulk density and water holding capacity is
shown in Table 3. The pH of most biochars (CS, RW, and
WH) varied from neutral to alkaline range while the biochar
derived from BB had an acidic pH. Electrical conductivity
(EC) is an indicator of salts and is responsible for exchange
of ions. The EC of biochars in the present study ranged
between 102.56-7569.03 µs cm−1. In the present study, bulk
density is highest in BB and lowest in WH suggesting in-
creased char porosity in WH compared to other biochars
examined. Water holding capacity is highest in WH and low-
est in CS.

FTIR analysis provides the chemical composition. The
BB and CS biochars showed 1 prominent peak, 12 peaks
with RW and 6 peaks with WH. The surface functional
groups, according to the FTIR reports of the four biochar
samples, were represented in Table 4. The OH, peroxide and
nitrogen containing functional groups was present in all four
types of biochar. These groups help in sorption of water,
ion exchange, ageing, adsorption and energy storage. The
carbonate group which helps in ion exchange and immobil-
ization of heavy metals was present in three biochars except

Table 2: Major elemental composition of the biochars in this study.

Element
(wt. %) BB CS RW WH

C 10.13 66.25 72.73 41.3
H 0.05 1.43 1.41 0.12
N 1.54 1.32 1.15 1.86
O 34.24 21.27 9.31 37.41
P 11.51 0.15 0.46 0.12
K 0.12 0.53 4.2 1.65
Ca 24.31 0.23 4.33 1.55
Mg 0.52 0.21 0.96 0.41
S BDL BDL BDL 0.09
Fe BDL 1.27 BDL 0.87
Cu BDL BDL BDL 0.29
Cl BDL BDL BDL 1.31
Na 0.51 BDL BDL 0.36
Si BDL 1.83 0.34 3.03
Al BDL 2.25 0.33 3.26
Ti BDL BDL BDL 0.14

Values are based on one time analysis
BDL, below instrument detection limit
BB-Bovine Bone, CS- Coconut Shell,
RW-Rubberwood, WH- Water hyacinth

CS. But CS and RW contains organic phosphate group that
aid in CEC and immobilization of heavy metals. Methylene
and methoxy ether were present in BB and CS which is an
indication of carbon sequestration. Aryl thio ether (CS) and
aromatic CH (BB, WH) is a positive signal for persistence of
the biochar.

4 Discussion

Mineral matter (ash), moisture, volatile matter and fixed
carbon are generally regarded as major constituents that de-
termine the suitability of feedstocks for biochar production
(Antal & Gronli, 2003). The biochar produced from feed-
stocks can be used as a fertiliser and can be used for carbon
sequestration. When feedstocks are classified based on ash
content as low (<5 %), medium (5-10 %) and high (>10 %)
(Iyer et al., 2002), the rubberwood alone was low while
bovine bone, coconut shell and water hyacinth could be clas-
sified as high. Suliman et al. (2016) reported that the ash
content of the feedstock is closely related to biochar yield
which was evident in the present study. Keeping the mois-
ture content of the feedstock up to 10 % (by weight) appears
to be ideal (Collison et al., 2009) as higher moisture contents
increase the cost of biochar production. In the present study,
WH recorded higher moisture (20.8 %) which was above this
limit while BB, CS and RW had moisture content within this
limit. The volatile matter is naturally high in most feedstocks
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Table 3: Properties of biochar derived from waste biomass.

Parameters BB CS RW WH

pH 6.3± 0.01d 7.6± 0.01c 8.2± 0.01b 8.3± 0.01a

Electrical conductivity
(µs cm−1)

160.8± 0.15c 102.6± 0.15d 558.9± 0.12b 7569± 0.15a

Bulk density (g cm−3) 72.6± 0.02a 45.7± 1.32b 18.8± 0.03c 16.8± 0.07d

Water holding capacity ( %) 100.6± 1.4c 57.9± 1.57d 321.1± 1.33b 431.2± 2.4a

Values are mean± standard deviation of three replicates. Mean in each line with different letters are
significantly different (P< 0.05) by Tukey’s HSD.
BB-Bovine Bone, CS- Coconut Shell, RW-Rubberwood, WH- Water hyacinth

which make it easy to ignite (Ciolkosz, 2010). Among the
feedstocks volatile matter was high in RW (74.92 %) fol-
lowed by CS (52.65 %) indicating its easy decomposition by
heat (Lam et al., 2016). The fixed carbon content was high in
WH (18.75 %) followed by CS (16.02 %) and RW (15.56 %)
while BB had the least (1.17 %). Feedstocks with high fixed
carbon are able to produce high percentage of biochar during
pyrolysis process (Lee et al., 2013).

C, H, N and O values in the present study are similar to
those already described for similar feedstocks from differ-
ent geographical locations (Moreira et al., 2016; Tripathi et
al., 2016). The elemental ratios of H/C and O/C explain
the degree of aromaticity and bonding arrangement of the
feedstocks. In general, the H/C and O/C ratios seemed to
be low in the feedstocks particularly in CS which were 0.01
and 0.54 respectively indicating that C in these materials is
predominantly unsaturated (Ghani et al., 2013).

The calorific value was highest in CS and lowest in BB.
The elements C, H, O are known to improve the calorific
value of feedstock (Channiwala & Parikh, 2002).

Cellulose, hemicelluloses and lignin in plant based feed-
stocks (CS, RW and WH) varied while these components
were not detected in BB. Cellulose and lignin form compon-
ents of biomass and lignocellulosic materials often occur as
a mixture of 40-80 wt % of cellulose, 15-30 wt % of hemi-
cellulose and 0-25 wt % of lignin (Carrier et al., 2011). High
cellulose content was obtained in WH which increased up to
64 % compared to other feedstocks. Hemicellulose content
of these feedstocks was more or less on par. Lignin content
showed normal (CS) to higher (RW) levels however too low
in WH. These values fall within the broad range of values
obtained with other biomass materials in earlier studies (Ab-
nisa et al., 2013; Mary et al., 2016; Shariff et al., 2016).
More extractives in biomass feedstocks contribute to liquid
and gas products either through simple volatilization or de-
composition (Shariff et al., 2016).

Earlier reports indicate that the relative amount of cellu-
lose, hemicelluloses and lignin could significantly influence
char yield (Abnisa et al., 2013). Lee et al. (2013) reported
that feedstock with high hemicelluloses and cellulose con-
tent could produce higher char yield during pyrolysis pro-
cess. According to Mokrzycki et al. (2020) high cellulose
content in the feedstock often lead to the formation of volat-
ile products and high char yield. If that is the case, the in-
creased char yield obtained in WH is quite normal because
the WH feedstock showed a high value for cellulose and ex-
tractives. Conversely, BB, which had no detectable quant-
ities of these components exhibited higher char yield in the
present study remains as a fact which is surprising and war-
rants special attention. In this context, it is worth mentioning
the finding of Domingues et al. (2017) and Tomczyk et al.
(2020) that inorganic compound such as P, K, Ca and Mg re-
sults in high ash and biochar yield. This finding holds good
in our study because a high value of P and Ca was detected
in BB and it can have lead to the high char yield.

Biochar production and characterisation
The SEM images of biochar revealed the presence of

aligned honeycomb like groups of pores which are thought
to have evolved consequent to the removal of condensed
volatiles and other decomposition products that block poros-
ity (Demirbas, 2006) during pyrolysis. All the biochars
showed porous structure with different size. The four types
of biochars holds microporous structure with varying shape.
WH has the greatest porosity of around 9 µm followed by CS
and RW with porosity around 8 and 5 µm which help them to
carry bacteria and mycorrhiza (Mangrich et al., 2015). The
microporous nature of biochar helps to retain water thus in-
creasing water holding capacity (Quilliam et al., 2013), al-
lows the movement of roots through the soil (Downie et al.,
2009), and serve as a safe nest for various microorganisms
to survive and proliferate (Pietikäinen et al., 2000; Quilliam
et al., 2013). So, WH and CS biochars can act as a suitable
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Table 4: Functional groups and components in biochars.

Wave number
(cm−1)

Functional
group assign-
ment

Role of functional groups Reference Detected
Biochar

3431.83,
3427.05,
3394.60,
3342.52

OH stretch Sorption of water; ion exchange (Yang et al.,
2019)

BB, CS,
RW, WH

3037.26 Terminal (vinyl)
C- H stretch

Mineralization (Singh et al.,
2016)

RW

3035.54 Ammoniumion Adsorption of pollutants, catalysis, energy storage im-
mobilization and release of nutrients

(Godwin et
al., 2019;
Leng et al.,
2020)

CS

2925.43,
2847.67

Methylene
C-H asymmet-
ric/symmetric
stretch

Carbon sequestration; mitigate climate change (Shareef &
Zhao, 2017)

BB

2900.02 Methylene C-H
stretch

Carbon sequestration; mitigate climate change (Shareef &
Zhao, 2017)

CS

2835.2 Methoxy methyl
ether O-CH
stretch

Carbon sequestration; mitigate climate change (Shareef &
Zhao, 2017)

CS

1651.21 Alkenyl C=C
stretching

Adsorption (Abd-
Elhamid
et al., 2020)

BB

1613.62 Aromatic ring
structure

Persistence of charcoal (Glaser et al.,
2001)

WH

1578.44,
1571.87,
1556.41

Secondary
amine NH
stretch

Adsorption of pollutants, catalysis, energy storage im-
mobilization and release of nutrients

(Godwin et
al., 2019;
Leng et al.,
2020)

CS, RW,
WH

1455.74,
1430.27,
1429.19

Carbonateion Ion exchange; promote adsorption and immobilization
of heavy metals

(Leng et al.,
2020; Yang et
al., 2019)

BB, RW,
WH

1417.32,
1411.69

Carboxylate Ionised and influence soil charges- sorption, increase
CEC, heavy metal stabilization

(Leng et
al., 2020;
Uchimiya et
al., 2012)

BB, CS

1362.28 Phenol or ter-
tiary alcohol, O-
H bend

Sorption of water and other hydrous materials; ion ex-
change

(Yang et al.,
2019)

CS

1259.52,
1258.12

Organic phos-
phate, P= O
stretch

Nutrient element, precipitator for heavy metals, miner-
alization, immobilization and release of nutrients

(Xiao et al.,
2018)

CS, RW

1102.84 Sulfate ion Promote adsorption and immobilization of heavy metals (Yang et al.,
2019)

WH

1035.71,
959.85

Aromatic C-H in
plane bend

Persistence of charcoal (Glaser et al.,
2001)

BB

1030.32 Aliphatic phos-
phate P-O-C
stretch

Nutrient element, precipitator for heavy metals, miner-
alization, immobilization and release of nutrients

(Xiao et al.,
2018)

BB

874.57,
874.22,
873.89,
871.57

Peroxides, C-O-
C stretch

Degree of aging or oxidation (Nguyen &
Lehmann,
2009)

BB, CS,
RW, WH

819.03 Nitrate ion Adsorption of pollutants, catalysis, energy storage, im-
mobilization and release of nutrients

(Godwin et
al., 2019;
Leng et al.,
2020)

RW

810.64 Epoxy and oxir-
ane rings

Degree of aging or oxidation (Chen et al.,
2019; Leng et
al., 2020)

CS

754.43 Aryl thioethers,
(C-S stretch)

Persistence of charcoal (Glaser et al.,
2001)

RW

748.39 Methylene-
rocking

Carbon sequestration; mitigate climate change (Shareef &
Zhao, 2017)

CS

713.07 Alcohol, OH out
of plane

Sorption of water and other hydrous materials; ion ex-
change

(Yang et al.,
2019)

RW

603.17,
602.85,
565.35,
562.65

Disulfides (S-S
stretch)

Promote adsorption and immobilization of heavy metals (Chen et al.,
2019)

BB, RW

BB- Bovine Bone, CS-Coconut Shell, RW-Rubberwood, WH-Water hyacinth
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habitat for microorganisms, decrease water stress, and will
enhance the movement of roots.

The elemental weight of C, H, N and O were high in plant
derived biochars which is in congruence with earlier find-
ings (Ramzan et al., 2011; Tillman, 2000). The presence of
considerable amounts of alkaline metals in the biochar sug-
gests its potential as soil amendments for enhancing soil fer-
tility, increasing soil organic carbon, and reducing soil acid-
ity. O/C and H/C ratios are indicators of carbonization pro-
cess during pyrolysis (Weber & Quicker, 2018), It also ex-
plains the longevity of biochars in the environment. Biochars
with O/C ratios < 0.2 are regarded as most stable (>100
years), between 0.2 and 0.6 are moderately stable (100 to
1000 years),< 0.6 are unstable (<100 years) (Spokas, 2010).
In this regard RW is most stable and CS is moderately stable.
H/C ratio less than 0.7 indicates fused aromatic ring struc-
ture of biochar (Ippolito et al., 2020). The H/C ratio < 0.3 of
biochar defines its N2O mitigation property (Cayuela et al.,
2015). So, all the biochars in our study have N2O mitigation
property and have fused aromatic ring structure.

The pH of biochar is in accordance with the findings of
Jiang et al. (2012) and Machado et al. (2018) that most
biochars have a pH value within the alkaline range. Previous
reports showed that, high pH of biochar leads to increase in
ash content (Qayyum et al., 2015). The increase in elec-
trical conductivity was manifold in WH compared to other
biochars. High C content is suggested to be a reason for
the high EC of biochars (Gabhi et al., 2017). The electrical
conductivity of biochar also depends on the type of feed-
stock and the pyrolysis temperature. At higher temperatures
the ash content increases by the loss of volatile components
(Cantrell et al., 2012). Low bulk density is considered as
a desirable characteristic of biochars and it appears to be
mostly due to high porosity which facilitates greater move-
ment of roots, water and ion exchange (Downie et al., 2009).
Further the increased porosity might have facilitated the ac-
commodation of more water in its spaces resulting in the
highest water holding capacity of WH biochar.

The chemical interaction between biochar and environ-
ment is governed by its surface chemistry (Ghani et al.,
2013). The surface functional groups of the four biochar
samples were hydroxyl, alkane, alkenyl methyl, carboxyl,
carbonate, nitrate, phosphate, thioester and peroxide sug-
gesting that these biochars could be used as soil amendment
for improving sorption of water, ion exchange, release of
nutrients, adsorption of pollutants, immobilisation of heavy
metals and C sequestration.

Implications for soil amendment
The chemical and physical characteristics of the four

biochars under study showed that they can be used as a soil

amendment to improve the water retention, carbon sequest-
ration, soil structure and fertility. The porosity, water hold-
ing capacity and bulk density of all the four biochar types
were almost similar or higher than found in previous studies
using the same biomass resources (Hariz et al., 2015; Piash
et al., 2016; Devens et al., 2018). So, these biochars can be
used to improve soil physical characteristics. Biochars also
contain qualitative minerals in high percentage (Piash et al.,
2016; Bao et al., 2021; Hussain et al., 2021). So, it also helps
to improve the chemical properties of the soil such as carbon
sequestration, mineral cycling, microbial diversity and soil
fertility .

5 Conclusion

The results showed that pyrolytic conversion of the four
indigenous biomass resources into biochar is possible using
the standardized in-farm method. The ash content, moisture
content, volatile matter, fixed carbon, C, H, N, O percentage,
calorific value, cellulose, hemicelluloses and lignin content
of feedstocks affected char yield and elemental composition
of biochars. Physiochemical analysis and biochar structure
analysis revealed different elemental and functional group
composition, porosity and water holding capacity and EC
for each biochar. Properties of the biochar produced from
these biomass resources showed their potential as good soil
conditioners. Though the char yield was more in BB (ani-
mal derived biochar), the plant derived biochars (RW, CS,
WH) had higher value for carbon. High pH, low bulk dens-
ity, high porosity, high water holding capacity and high ele-
mental composition of the WH biochar makes it unique as a
liming agent, soil conditioner and source of nutrients com-
pared to other plant based and animal based biochars stud-
ied. By pyrolytic conversion of WH into useful biochar, an
efficient disposal of this weed which is a menace to the envi-
ronment is also achieved.
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