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Hydrothermal Variations and Physio-Osmotic Conditioning Effects
on Five African Millet Varieties during Short Term Substrate Des-
iccation
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Abstract

Environmental factors differentially affect the germination of millet (Pennisetum amer-

icanum L.) and impact both the rate and extent of field emergence. The extent and

uniformity of emergence depends on hydrothermal variations in both soil moisture and

temperature levels. To determine the impact of these two factors and counteracting

physiological and osmotic conditioning seed treatments, two growth chamber trials were

conducted on African millet. Five genotypes responded to differences in temperature

or osmotic seed conditioning. Seed conditioning with GA3, Kinetin, NaCl and KNO3

was tested. Increasing incubation temperature decreased the final proportion of seeds

germinating and slowed germination for each of the five genotypes tested when exceed-

ing a 29◦C threshold. GA3 improved the performance of seed lots, while physio-osmotic

conditioning and temperature interacted to affect the proportion of germinating millet

seeds. These germination tests partially explain interspecific differences in the impact

of timing of heat fluctuations in the field. Patterns of millet germination in response to

temperature and rainfall fluctuations could be explained by its response to seed condi-

tioning, temperature or moisture levels.
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1 Introduction

Osmotic priming is widely used to improve seed quality. It causes an arrest in seed

germination after phase II of the triphasic pattern of water uptake, when no changes in

water content occur. Major metabolic events occur at this time to prepare the seed for

radicle emergence (Dewar et al., 1998) and the seed is restrained from entering phase

III, which includes radicle elongation and completion of germination (Garcia-Maya

et al., 1990). Osmotic priming of seed generally causes faster germination (Kader and

Jutzi, 2001) and faster field emergence (Kader, 2001) which may result in greater

mean plant dry weights, leaf areas and ground cover percentages (Posmyk et al., 2001;

Kader and Jutzi, 2002).
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Both higher (Finch-Savage et al., 1998) and unchanged (Colbach et al., 2002) final

germination percentage at reduced osmotic potential have been reported. There is a

linear relationship between germination rate and hydrothermal priming time, indicating

that both the external osmotic potential during priming and the duration of the priming

period contribute to the improved germination rate (Alvarado and Bradford, 2002).

The threshold temperature at which seeds can be treated dictates the extent of the

beneficial effect of osmoconditioning in alleviating drought and/or heat stress within

seed. Heat-stressed seeds, however, have been found to be more responsive to hormonal

applications than osmotic induction (Zhu, 2002).

This experiment was designed to investigate the influence of physio-osmotic seed con-

ditioning with both osmotic agents and hormones on millet (Pennisetum americanum

L.) seed response to drought and heat stress. The range of temperatures and the con-

centrations of hormones were based on previous work (Kader, 2001, 2002) which were

effective in osmoconditioning sorghum seed.

2 Materials and Methods

2.1 Constant Incubation Temperatures

Four seed treatments including a control were applied to four millet genotypes. These

included the varieties Tupatupa (Malawi), ICMV88908 (Namibia), Shibe (Tanzania)

and Tuso (Zambia). All seed lots were analysed following International Seed Testing

Association regulations (ISTA, 1993) and revealed 1000 seed weights of 7.9 to 13g,

moisture content of 12.7 to 14.3% and viability of 98.1 to 99.6%. Seed treatments

included soaking seed in 150mg gibberellic acid (GA3) per litre, 150mg kinetin per litre,

5g KNO3 per litre or 5g NaCl per litre for 3 days (d). The control included water-

soaked seeds (distilled water). All 4 seed treatments and the wet control were incubated

during the 3 d period at one of six temperatures. These were 9, 14, 19, 24, 29 or 34◦C in

incubation chambers in the dark. After treatment, seeds were retrieved from solutions,

washed in distilled water and sown in 1000cm3 trays between germination paper. One

hundred seeds were sown per tray and each treatment combination replicated 5 times.

Trays were placed in a germination cabinet set at a constant 42/29◦C (11hr/13hr)

temperature in the dark. Germination counts were taken at 24 hour (h) intervals for

9 d and from them the final germination percentage (FGP), first day of germination

(FDG), mean germination time (MGT) and germination rate index (GRI) (Esechie,

1994) calculated. Data were arc sine transformed (Brown and Rothery, 1993) and

subjected to an analysis of variance (ANOVA) with mean separation at the 5 % level

of probability through Duncan’s Multiple Range Test (Chew, 1980; Day and Quinn,

1989).

2.2 Alternating Incubation Temperatures

A dry and wet control were included in this experiment in addition to two sodium

chloride-based treatments. These were 4 and 8g NaCl/l solutions with an osmometer-

measured (Knauer, Germany) osmotic potential (Ψs) of -3.2 and -5.7 bar, respectively.

Pearl millet PMV 3 seeds (Zimbabwe) were either untreated (dry control), soaked in
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distilled water (wet control) or soaked in the NaCl solutions for 3 d. Incubation tem-

peratures during treatment included a constant 25◦C regime and 3 alternate regimes.

These were 25/15◦C (12 h/12 h), 25/10◦C and 25/5◦C. Treatments were conducted in

the dark. After treatment seeds were washed in distilled water and dried back at 25◦C

for 4 h. Batches of 100 seeds were then sown in 1000 cm3 trays between germination

paper, and 150 ml of a PEG (polyethylene glycol, molecular weight 10.000) solution

(Sigma Chemical, US) producing a drought level of -10 bar added to them. Boxes were

covered with lids, replicated 5 times and placed in an incubator at 44/13◦C (8 h/16 h).

Germination was scored daily for a period of 10 d and from the data the FGP, MGT

and germination index (GI) were calculated (Benech Arnold et al., 1991). At the

end of the test, 16 seedlings were randomly taken from the 8 middle creases in the filter

paper and their plumules and radicles excised and weighed after drying at 80◦C for 4

d. These produced the dry weight of plumule (DWP), dry weight of radicle (DWR)

and the plumule to radicle ratio (PRR) which is the product of DWP divided by DWR.

Statistical procedures were similar to the constant incubation temperature experiment.

3 Results and Discussion

3.1 Constant Incubation Temperatures

Simple effect analysis showed that soaking treatments did not have a significant effect

on the FGP or GRI of millet seed (Table 1). Germination speed as reflected by the

FDG and MGT was, however, significantly increased by seed treatments in comparison

to controls. GA3 yielded lower FDG values than all other treatments excluding kinetin.

Genotypes differed significantly in their germination characteristics (Table 1). The va-

riety Tupatupa gave the highest overall FGP and GRI pooled over treatments and in-

cubation temperatures followed by Shibe, Tuso and ICMV88908. The slowest initiation

and rate of germination were observed in Tuso as illustrated in Table 1. Incubation

temperature also had a significant effect on the FGP, FDG, MGT and GRI. The 34◦C

incubation temperature resulted in the lowest FGP followed by 29◦C, whereas the 9◦C

regime caused germination to initiate later and take longer time to complete. The 24◦C

regime was optimal in terms of this initiation and ending of germination (Table 1)

Interactive analysis of genotype and temperature effects (data not shown) revealed the

same trend where 29 and 34◦C reduced the FGP. Germination speed was generally

increased by an increase in incubation temperature and seed treatment × genotype

analysis showed no preference of a genotype to one specific treatment (data not shown).

The same applied to seed treatment × incubation temperature effects, where no single

treatment preferred a particular temperature.

3.2 Alternating Incubation Temperatures

Unexpectedly, the FGP of the dry control was significantly higher than that of either

the wet control or the two NaCl treatments. However, the MGT of the dry control

was also higher meaning that it germinated slower than those seeds that were soaked
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Table 1: Effect of seed treatments, genotype and incubation temperature on germina-
tion characteristics of millet

FGP (%) FDG (day) MGT (day) GRI (%/day)

Seed Treatments

Dry Control 65.9 a 3.6 a 3.8 a 15.3 a

GA3 68.6 a 3.3 b 3.4 b 16.2 a

Kinetin 64.2 a 3.5 ab 3.6 b 15.1 a

KNO3 64.1 a 3.5 a 3.6 ab 15.4 a

NaCl 63.6 a 3.5 a 3.6 ab 14.4 a

Genotype

Tupatupa 87.2 a 3.3 b 3.4 b 22.1 a

ICMV88908 45.1 d 3.4 b 3.5 b 10.3 d

Shibe 66.1 b 3.5 b 3.6 b 15.6 b

Tuso 61.0 c 3.7 a 3.8 a 13.3 c

Incubation Temp. (◦C)

9 71.5 a 3.9 a 4.0 a 14.8 ab

14 7.8 a 3.6 b 3.7 b 15.5 ab

19 70.3 a 3.4 b 3.5 b 16.0 a

24 68.2 a 3.1 c 3.2 c 17.2 a

29 58.5 b 3.4 b 3.5 c 15.2 ab

34 50.3 c 3.5 b 3.6 b 13.2 b

Means of treatment effects within columns followed by a similar letter are not significantly

different according to Duncan’s Multiple Range Test (p ≤ 0.05). Same applies to means of

genotype and incubation temperature effects. FGP: Final Germination Percentage, FDG: First

Day of Germination, MGT: Mean Germination Time and GRI: Germination Rate Index.

(Table 2). Due to the higher FGP of the dry control it attained a higher GI value at

the end of the test. The dry weight of plumules of seeds treated with the 8g NaCl/l

solution was significantly greater than those of all other treatments (Table 2) which did

not differ from each other in this respect. The DWR and PRR were not significantly

different between treatments.

Incubation temperature did not have an effect on the FGP of sorghum seeds (Table

2), but affected germination speed as seen from the MGT values. The 25◦C constant

temperature regime gave faster germination than the 25/15◦C regime. The GI was

also higher at 25◦C than at 25/15 or 25/10◦C (Table 2). Neither DWP nor PRR were

affected by incubation temperature even though the DWR was higher at 25◦C than at

25/20 or 25/15◦C.
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Table 2: Effect of seed treatments and incubation temperatures on germination and
seedling characteristics of PMV3 seeds

FGP(%) MGT(day) GI DWP(mg) DWR(mg) PRR

Seed Treatment 1

Dry Control 82.8 a 4.0 a 535.4 a 1.0 b 1.5 a 0.83 a

Wet Control 61.2 b 3.5 b 432.2 bc 1.3 b 1.7 a 0.88 a

4g/l NaCl 58.0 b 3.3 bc 401.7 c 1.1 b 1.6 a 0.75 a

8g/l NaCl 53.0 b 2.9 c 486.6 ab 2.0 a 2.1 a 0.97 a

Incubation Temp. (◦C)

25 68.5 a 3.1 b 521.4 a 1.4 a 2.3 a 0.64 a

25/20 64.9 a 3.3 b 476.1 ab 1.2 a 1.5 b 0.89 a

25/15 63.0 a 3.9 a 426.0 b 1.3 a 1.5 b 0.93 a

25/10 58.5 a 3.5 ab 432.5 b 1.5 a 1.6 ab 0.97 a

1 Means of treatment effects within columns followed by a similar letter are not significantly

different according to Duncan’s Multiple Range Test (p(0.05). Same applies to means of

incubation temperature effects. FGP: Final Germination Percentage , MGT: Mean Germination

Time, GI: Germination Index, DWP: Dry Weight of Plumule, DWR: Dry Weight of Radicle,

PRR: Plumule/Radicle Ratio, Dry Control: untreated seeds, and Wet Control: Water-soaked

seeds.

Interactive analysis between seed treatments and temperature regimes revealed no pref-

erence of treatments for a certain temperature but a tendency of water-soaked seeds to

perform better under the 25◦C regime than under others (data not shown).

A constant temperature during seed soaking appears to be more favourable for post-

treatment germination than an alternating one. Generally, a rise in incubation temper-

ature during treatment increased post-treatment germination speed which agrees with

the data of Khan et al. (1980) who obtained higher germination rates at 20◦C in com-

parison to 10 or 15◦C. However, no effect on the FGP was detected. This means that if

a threshold temperature is reached, certain changes may occur within the seed that are

dependent on future temperatures. Lima bean (Phaseolus lunatus L.) seeds imbibed at

15◦C and then allowed to germinate and grow at 25◦C have been shown to produce

smaller seedlings (Pollock and Toole, 1966), which has been linked to preferred tem-

perature ranges during soaking (Kader and Jutzi, 2002). Hegarty (1978) concluded

that reduced seed response after soaking at 10 or 30◦C compared to 20◦C is associated

with greater losses of solutes from the seeds. Seeds, in this experiment, were dried back

after treatment and it has been reported that embryos imbibed for 60 minutes, dried

and returned to water again show a rapid leakage of solutes (Bewley and Black,

1978a; Winiewski and Zagdaska, 2002). This may be one of the reasons why dry

controls gave higher FGP values. Imbibition at the higher temperature range also in-

creases sensitivity to ethylene (Zarnstorff et al., 1994) which may explain reduced
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FGP values. Also, at 30◦C cytokinin passage from the cotyledon to the embryonic axis

is affected (Eloisa Revilla et al., 1988). Hassan et al. (1985) observed decreased

auxin concentrations with time in seeds of Anemone coronaria and Ranunculus asiaticus

at 8◦C compared with 24◦C during soaking. This may have caused the increased MGT

values observed under lower incubation temperatures.

That an increase in soaking temperature reduced the MGT is in agreement with the

results of Hardegree (1994) and Argerich and Bradford (1989) who showed in-

creases in germination rate with rises in temperature up to 25◦C. Khan et al. (1978)

found that osmoconditioning celery seeds at 15◦C was not as effective as at 20◦C in

shortening germination period. Pollock and Toole (1966), reported an immediate

imbibitional uptake of water at 25◦C for about 2 h, a lag period for the 2nd to the 6th

h, and, finally, a rapid, linear uptake to about the 25th h. Both the duration of the

lag phase and the second rapid uptake phase were dependent on imbibition tempera-

ture. Imbibition at lower temperatures (5 or 15◦C vs. 25◦C) lengthened the lag phase.

Additionally, higher temperatures may have reduced water viscosity surrounding the

seed and, thus, increased its diffusion (Woodstock, 1988). Vertucci and Leopold

(1983) suggested two components of early imbibition: An initial wetting reaction which

is influenced by the surface tension of the water and a subsequent flow of water through

seed tissue which is influenced by water viscosity.

The effect of soaking treatments on the germination and early axis growth of seedlings

may not be attributed to the osmotic potential (Ψs) of solutions which would decrease

water uptake as it drops (Gurmu and Naylor, 1991; Leubner-Metzger et al.,

1996), but rather to possible physiological or ionic effects. The Ψs of 4g NaCl/l and

8g NaCl/l solutions were -3.2 and -5.7 bar. Hence, differences were not large in the Ψs

between treatments and it is, thus, difficult to trace back results to this factor, which

would typically arise from notable differences in Ψs (Hadas and Russo, 1974). The

greatest increase in germination speed in the constant temperature experiment was in

the GA3 treatment. The production of gibberellin is speculated to be a prerequisite for

radicle emergence (Bewley and Black, 1978a; Dewar et al., 1998). Additionally,

cell extension of plant tissue is generally held to be regulated by hormones, especially

auxins and gibberellins (Agu et al., 1993; Rood, 1995). Since germination culminates

in radicle emergence, which in most cases comprises only cell enlargement and not

necessarily cell division (Bewley and Black, 1978b), the promotive role of GA3 in

increasing germination speed is not surprising. Exogenous application of GA3 has been

reported to stimulate growth (Kozlowski, 1972; Bewley, 1995; Steinbach et al.,

1997) and germination percentages and rates in sorghum seeds soaked for 4-6 days in

500 or 750 ppm GA3 at 15 and 20◦C (Santipracha, 1986; Kader, 2001).
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