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Abstract

Agricultural land use in the Mekong Delta of Vietnam is dominated by intensive irrigated

rice cropping systems on both alluvial and acid sulfate soils. A stagnating and occa-

sionally declining productivity may be linked on the alluvial soils to low N use efficiency

and low soil organic matter content while on acid sulfate soils to acidity, Al toxicity and

P deficiency. For economic reasons, farmers increasingly diversify their cropping system

by replacing the dry season rice by high-value horticultural crops grown under upland

conditions. However, upland cropping is likely to further exacerbate the soil-related

problems. Organic substrates from decentralized waste and waste water management

are widely available and may help to alleviate the reported soil problems. During the

dry season of 2003/2004, the effect of the application of various types and rates of

locally available waste products on crop performance was evaluated at both an alluvial

and an acid sulfate soil site. The C and N mineralization dynamics of nine organic

substrates from waste and waste water treatment were determined by anaerobic (N)

and aerobic (C) incubation in the laboratory. The response of 12 week-old mungbean

(dry matter accumulation) to substrate application (1.5 – 6.0 Mg ha−1) was evaluated

on a degraded alluvial and on an acid sulfate soil. In the alluvial soil, largest mineral-

ization rates were observed from anaerobic sludge. Biomass increases in 12 week-old

mungbean ranged from 25-98% above the unfertilized control. In the acid sulfate soil,

highest net-N release rates were observed from aerobic composts with high P content.

Mungbean biomass was related to soil pH and exchangeable Al3+ and was highest with

the application of aerobic composts. We conclude that the use of organic substrates in

the rice-based systems of the Mekong Delta needs to be soil specific.
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1 Introduction

In Vietnam, the area planted to rice increased from 5.6 Mha in 1980 to 7.7 Mha in 2000,

with >90% of the production occurring in lowland ecosystems (Maclean et al., 2002;

Can, 2003). Nearly half of this lowland rice is produced in the Mekong Delta, where the

area cultivated with rice has been substantially increasing as a result of infrastructure

development and recent demographic growth (Chiem, 1994). Being the key component

of agricultural land use, rice is used in diverse production systems and cropping patterns.

This diversity is largely determined by soil type with acid sulfate soils and alluvial soils

covering each about 40% of the land area (van Bo et al., 2002).

Rice triple cropping systems are mainly found in areas with alluvial soils with a limited

influence of the late season flood (nearly 0.9 Mha). Fields are fully irrigated, rice is direct

wet-seeded, and production is based on high external input use. Main problems in this

production system are associated with pollution of the environment by agrochemicals and

a relatively low productivity, probably linked to near-permanent soil flooding, increased

incidence of soil-born diseases, a low N use efficiency and, in some instances, a low soil

nutrient supply and declining soil organic matter content (Dobermann et al., 2002).

With the rapid economic development in the Mekong Delta, farmers tend to diversify

their cropping system. The most prominent strategy is the replacement of the dry season

rice by high-value horticultural crops grown under upland conditions (e.g.; the rice -

rice - field vegetable rotation). While short-term economic benefits are obvious, upland

cropping is likely to further accelerate the mineralization of soil organic matter and hence

to exacerbate the problems of low soil nutrient supply and the physical degradation of

the soil structure, related to low soil organic matter content.

The rice double cropping system dominates on the acid sulfate soils and is concentrated

in areas where seasonal floods occur (about 0.7 Mha). During the period of intense

flooding in October-November, a 2-3 months fallow period follows a crop of transplanted

wet season rice. Another irrigated rice crop is grown after flood recession during the dry

season (Ni, 2000). Rice production is constraint by soil-related nutrient imbalances such

as iron toxicity and P and Zn deficiencies (Tinh et al., 2001). During intermittent soil

aeration phases, the acidification of the aerobic soil can result in severe Al toxicity and

further exacerbate the problem of P deficiency (Husson et al., 2000). The geochemistry

of the acid sulfate soils tends to limit the choice of crops to be grown during the aerobic

soil phase to the relatively acidity-tolerant species and cultivars (Minh, 1996). However,

as in the triple cropping system, mixed production of wet season rice with diverse dry

season upland crops on raised beds are emerging, particularly in the peri-urban areas.

Organic substrates from decentralized waste or wastewater treatment are widely available

in South Vietnam (Watanabe, 2003). Their use in agriculture can recycle substantial

amounts of nutrients, thus improving soil fertility and increasing rice yield (Clemens

and Minh, 2005). However, high transport costs and an unfavorable cost-benefit ratio

are limiting the use of organic substrates to lowland rice. In addition, the application

of organic waste to flooded fields may lead to increased water pollution and microbial

contamination from the substrates (Rechenburg and Herbst, 2006). When applied
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to an upland crop grown in rotation with rice, the use of organic substrates may be en-

vironmentally safer than in lowland fields, and the substrates may contribute to alleviate

the prevailing soil-related problems.

We hypothesize that in the rice triple cropping systems on alluvial soils, the replacement

of the dry season rice with an upland crop combined with the application of organic

substrates can overcome the problem of declining soil fertility and may improve the

system’s productivity. In the rice double cropping system on acid sulfate soils, the

application of organic substrates to upland crops may counteract negative effects of

low pH and excess Al3+ and permit the cultivation of more acidity-sensitive higher-

value crops such as mungbean (Vigna radiata L.). Direct and residual effects of organic

amendments are likely to depend on the quality and quantity of the substrate applied as

well as on the type of upland crop. Accordingly, the following objectives were addressed

in both degraded alluvial and acid sulfate soils:

(1) Physico-chemical and mineralization characteristics of major organic substrates of

the Mekong Delta;

(2) Quantification of substrate effects on the biomass accumulation of mungbean grown

in rotation with rice.

2 Material and Methods

2.1 Study sites

All experiments were conducted in Cantho province of the central Mekong Delta. The

area is characterized by a monsoon climate. The length of the growing period for rainfed

crops is in excess of 320 days. According to the FAO (1978), the area is classified as

a humid forest agroecological zone. The mean annual rainfall ranges from 1,900 to

2,300 mm, falling mainly during the 6 months of summer monsoon (May-October).

Three farmers’ fields representing the triple cropping situation were selected close to

the village of An Binh (105°43’40” – 105°43’45” E latitude and 10°00’05” – 10°00’10”
N longitude). Three further farms, representing the rice double cropping pattern, were

selected close to the village of Hoa An (108°0’00” – 108°5’00” E latitude and 10°65’00”
– 10°70’00” N longitude). While An Binh was characterized by an alluvial clay soil with

low organic carbon and total N contents, the Hoa An site was characterized by a typical

acid sulfate soil with low available P and a high acidification potential under aerobic

conditions. Selected physico-chemical properties of the experimental soils are shown in

Table 1.

2.2 Crop plants

The widely grown improved semi-dwarf lowland rice (Oryza sativa L.) variety VD 20 with

105-day growth duration was obtained from Cuu Long Rice Research Station, Omon,

Vietnam. For homogenizing the field sites, it was pre-germinated for two days and

broadcast-seeded at a rate of 120 kg ha−1 into the water-saturated lowland field (An

Binh) or seeded into a wet bed and transplanted at 21 days after seeding at two seedlings

per hill at a 20×20 cm spacing (Hoa An). Mungbean (Vigna radiata L.) is commonly
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Table 1: Selected physico-chemical properties of the experimental soils (0-20 cm)

Parameter
Alluvial soil
(An Binh)

Acid sulfate soil
(An Binh)

Soil type (USDA) Tropaquept Sulphaquent

Texture Silty clay Clay Loam

Clay (%) 57 44

Silt (%) 34 55

Sand (%) 9 1

pH (H2O) 5.0 3.4

org. C (%) ∗ 1.52 4.59

Exch. Al3+ (mg 100g−1) † – 37.2

Tot. N (%) ‡ 0.16 0.26

Avail. P (mg kg−1) § 5.81 1.90

Exch. K (mg kg−1) ¶ 7.58 38.9

∗ Walkley-Black, † NaF titration, ‡ Kjeldahl, § Bray-I, ¶ NH4O-Ac extraction

cultivated in the Mekong Delta and was selected as a substitute of the dry season rice

crop. Seeds were obtained from the College of Agriculture, Cantho University. The

material was seeded at a 20×40cm spacing onto 10 cm high raised soil beds of 1×5 m,

that were constructed in the lowland plots after the harvest of wet season rice.

2.3 Substrates

Organic substrates from decentralized waste and wastewater treatment, commonly ap-

plied to field and garden crops in the Mekong Delta, were collected from farms in the

study area. These organic amendments included five aerobic substrates (vermicompost

from pig and goat manure, pig manure – rice straw compost, biogas sludge compost,

rice straw compost, and rice mushroom compost) and three anaerobic substrates (young

biogas sludge [<4 months], old biogas sludge [>12 months], and fish pond residue [30

– 50 mm depth of deposit]). The substrates differed widely in their N content (1.6 –

3%), C/N ratio (12 - 23), and P (0.15 – 1.65%) and K content (0.28–1.98‰). Selected

physico-chemical parameters of the organic amendments are presented in Table 2.

2.4 Chemical analyses

The C mineralization was determined by weight loss from litterbags containing 3 g

substrates. The organic substrates were placed into Nylon mesh bags (0.2 mm) and

incubated in the dark in three replicates per soil type (about 30 g substrate kg−1 soil)

for a period of 12 weeks (Okalembo et al., 2002). Soils were kept under aerobic

conditions at about 75% field capacity. The weight loss of the substrate in the litter

bags (dry matter) was recorded after removal, careful washing in distilled water and

oven drying for 48 hours at 70°C.
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Table 2: Selected physico-chemical properties of the organic substrates used in the
field experiments on alluvial and acid sulfate soils in the Mekong Delta in
2003/2004.

Substrate
Moisture
cont. (%)

NH+
4 -N

(mg kg−1)

NO−
3 -N

(mg kg−1)

Total N
(%)

C/N
ratio

Total P
(%)

C/P
ratio

Total K
(‰)

C/K
ratio

Aerobic Substrates

Vermicompost
(pig / goat)

60.4 1.40 844 2.20 19 1.39 30 0.92 454

Pig manure
straw compost

56.0 1.84 940 2.60 16 1.65 25 1.98 209

Biogas sludge
compost

38.7 2.68 1832 1.95 20 0.60 71 0.57 737

Rice straw
compost

68,7 4.28 19 1.95 22 0.15 274 0.57 732

Mushroom
compost

70.1 4.84 575 2.45 17 0.22 190 1.54 273

Anaerobic substrates

Biogas sludge (>
12 months)

82.5 1.23 t 2.55 12 0.68 53 0.65 470

Biogas sludge (<
4 months)

86.3 1.56 t 2.38 14 0.80 42 0.31 397

Fishpond residue
(3 – 5 cm)

78.9 1.76 t 1.35 18 0.40 48 1.81 106

t: traces

The N mineralization potential of substrates applied to the two soils was determined

by net ammonium-N release during two weeks of anaerobic incubation (Stanford

and Smith, 1972). Substrates were applied at 100 mg N kg−1 soil and 20 g of soil-

substrate mixture were placed in 50mL test tubes, filled with 30mL of distilled water.

Three replicates of each organic substrate and soil type (2 soils × 11 treatments ×
2 extraction times × 3 replications = 132 tubes) were incubated in the dark at 30 –

32 °C for 21 days and extracted with 2 N KCl after 7 days (initial value) and after

two further weeks of anaerobic incubation. The ammonium content in the extract was

determined colorimetrically via flow injection analysis. The net-N mineralization was

computed as (Nmin after 1 and 2 weeks of incubation) – (Nmin in the initial sample).

Substrate mineralization was calculated as the net-N release in amended minus that in

unamended sample tubes.

The total N in soil samples and in the biomass of 12 week-old mungbean was determined

by Kjeldahl method. Soil exchangeable K was extracted with NH4O-Ac, followed by

flame photometer determination. Soil P was determined according to the Bray-I proce-

dure and determined spectrophotometerically after vanadate coloration. Soil pH, total

acidity, and exchangeable Al+3 were based on a soil: extractant ratio of 1:5 (pH-H2O

). Soil total acidity and exchangeable Al+3 were determined only in the acid sulfate

soil. Soil samples (0-10 cm) were taken from individual planting holes of the test crops
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extracted with 2N KCl and subsequently titrated with NaOH and NaF for total acidity

and exchangeable Al3+, respectively (McLean, 1965).

2.5 Treatment application

Dry season field experiments were conducted at each of the two study sites during the

dry season of 2003/2004, following the field homogenization with an unfertilized crop

of lowland rice during the 2003 wet season. In addition, experiments were conducted

under controlled conditions in the laboratory of the Institute of Technology at Cantho

University (substrate C and N mineralization). The field experiments were established

at both the Hoa An (acid sulfate soil) and An Binh (alluvial soil) sites. Three adjacent

farms were used as replications at each site with treatments being randomized within

the farms (Randomized Complete Block Design - RCBD). The experimental area at

each site was 1500 m2 (500 m2 per farm), on which 10cm high soil ridges of 5.0 × 1.0

m were built after the harvest of wet season rice in November 2003 for the cultivation

of upland crops.

Field experiments studied (1) the response of mungbean to different substrates at one

substrate application rate and (2) the response of mungbean to one substrate at different

application rates. Twelve weeks after seeding of mungbeans, the dry matter accumu-

lation was determined from 1×3m harvest areas (alluvial soil) or from individual plants

(acid sulfate soil) after oven drying at 70°C for 48 hours. Experiment 1 : The differential

effect of organic amendments on a test crop of mungbean (involved the application and

manual incorporation (0-0.1 m) of eight substrates (Table 2) at a rate of 3 Mg ha−1

(dry matter basis) in comparison to an unamended control. Experiment 2 : The effect

of different application rates on a test crop of mungbean focused solely on the “old”

biogas sludge, applied at rates of 0, 1.5, 3.0, 4.5, and 6.0 Mg ha−1 (dry matter basis).

2.6 Data analysis

Data were analyzed for basic statistics (means and standard errors) by Microsoft EX-

CEL and subsequently subjected to ANOVA using SPSS 11.5. Mean separation was

done by Tuckey Test at 5% error probability. Graphical presentations were made with

SIGMAPLOT 5.3.

3 Results

3.1 Substrate mineralization

The substrates from waste and wastewater treatment were characterized based on

physico-chemical parameters (Table 2) and on their C and N mineralization charac-

teristics in both experimental soils (Figure 1). The C mineralization (weight loss) of

soil-applied substrates tended to be generally lower in the acid sulfate than in the al-

luvial soil. In general, larger mineralization rates were observed from anaerobic sludge

than from the aerobic composts. In the alluvial soil, the aerobic C mineralization varied

between 8 and 35% weight loss. Rice straw compost showed the lowest (9-15%), young

biogas sludge the highest C mineralization (24-35% weight loss). Vice versa, the sub-
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Figure 1: Carbon mineralization (% weight loss in litterbags during 12 weeks of aerobic
incubation – upper graph) and net-N mineralization (NH4-N in amended
minus unamended soil during 2 weeks of anaerobic incubation – lower graph)
of organic substrates applied to an alluvial soil – left side, and an acid sulfate
soil – right side (incubation experiments under controlled conditions). Bars
present standard errors of the mean (n=3); value bars with the same letter
are not significantly different by Tuckey Test (0.05).
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strates with highest P content tended to mineralize more rapidly than the substrates low

in P in the acid sulfate soil (up to 25% weight loss in pig manure-rice straw compost).

In the alluvial soil, anaerobic net-N mineralization varied between 1.2 and 7.2 mg N kg−1

soil. It followed a similar pattern as the aerobic C mineralization, whereby rice straw

compost showed the lowest, young biogas sludge the highest net-N mineralization. In

contrast to the alluvial soil, substrate N mineralization in the acid sulfate soil was by one

order of magnitude lower. Highest net-N release was observed from aerobic substrates,

particularly those with high P content (e.g., vermicompost and pig manure compost).

Lowest N mineralization was observed with rice straw compost with –2.8 mg kg−1 soil

(net-N immobilization).

3.2 Effects of substrates application to an alluvial soil

In experiment 1, all substrates were applied at 3 Mg ha−1 to soil ridges build in the paddy

fields after the harvest of wet season rice. The biomass accumulation of mungbean

after 12 weeks of growth responded differentially to substrate application (Table 3).

Incorporation of biogas sludge resulted in the largest mungbean biomass (3.9 - 4.8

Mg ha−1). The low-quality substrates, such as the aerobic rice straw compost, the

compost from rice mushroom production and the anaerobic fishpond residue resulted in

a low and not significant mungbean response (dry matter of 1.6-2 Mg ha−1). Biomass

response and crop nutrient uptake correlated significantly with the amount of added

P (P<0.01) and N (P<0.05) but showed little apparent relation to other substrate

attributes. Increasing the application rates of young biogas sludge (experiment 2),

resulted in N additions of 0 - 144 kg ha−1, corresponding to P additions of 0 - 48

kg ha−1. While N and P accumulation in the biomass increased nearly linearly with

increasing substrate application rates, no significant differences were observed in the dry

biomass accumulation of mungbean at application rates beyond 3.0 Mg ha−1.

3.3 Effects of substrate application on the acid sulfate soil

During the aerobic soil phase (dry season), the field site was characterized by a large

and small-scale heterogeneity in soil pH (2.8-4.3), total acidity (3-23 cmol kg−1) and ex-

changeable Al3+ (7-18 cmol kg−1). Based on the analysis of 264 individual soil samples,

significant linear correlations were observed between pH and total acidity (r2=0.64***)

and between total acidity and exchangeable Al3+ (r2=0.59***) (date not shown). As

crop growth strongly responded to aluminum, the soil exchangeable Al3+ was used as

a covariate in the statistical analysis and data are presented as dry matter per plant

in relation to the exchangeable Al3+ in the rhizosphere soil (soil collected from the

individual planting holes before treatment application).

In experiment 1, eight aerobic and three anaerobic substrates were applied to mungbean

at a rate of 3 Mg ha−1. Mean biomass accumulation did not differ between treatments.

However when using soil Al3+ as a covariant, the application of the aerobically com-

posted substrates resulted in significantly more biomass than the unamended control.

Anaerobic substrates produced an intermediate response, which was not significantly

different from either the unamended control or the application of aerobic substrates
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Table 3: Nutrient addition by substrates and the response in dry matter accumulation
and nutrient uptake of 12 week-old mungbean plants to the application of
organic substrates at 3 Mg ha−1 and to increasing application rates of biogas
sludge on an alluvial soil (An Binh, Vietnam, 2004).

Amount of nutrient added
(kg ha-1)

Mungbean nutrient content
at harvest (%)

Substrate
N P K

Mungbean
dry matter
(Mg ha-1) N P K

Unamended control 0 0 0 1.58e 1.40d 0.31e 1.74a

Aerobic substrates

Vermicompost 88.5 9.0 4.1 4.01c 1.28e 0.38c 1.31c

Pig manure compost 78.0 49.5 5.9 4.81ab 1.20g 0.49a 1.33c

Biogas sludge compost 55.5 18.0 1.7 3.92d 1.24e 0.40bc 1.28d

Rice straw compost 62.5 4.8 1.8 2.50e 1.02fg 0.27f 1.34c

Mushroom compost 53.5 6.6 4.4 2.04e 1.34de 0.41a 1.27d

Anaerobic substrates

Biogas sludge (<4 months) 86.5 20.4 1.5 4.81a 1.62d 0.47b 1.79a

Biogas sludge (>12 months) 72.0 24.0 1.1 3.68cd 2.18a 0.46b 1.58b

Fishpond residue 48.0 12.0 5.4 1.57e 1.06fg 0.47b 1.52b

Increasing rates of biogas sludge

0 Mg ha−1 0 0 0 1.58e 1.42d 0.31e 1.74a

1.5 Mg ha−1 36.0 12.0 0.4 3.11d 1.06f 0.33d 1.12d

3.0 Mg ha−1 72.0 24.0 0.8 3.68cd 1.52b 0.35cd 1.08f

4.5 Mg ha−1 108.0 36.0 1.3 4.21bc 1.60b 0.33de 0.97f

6.0 Mg ha−1 144.0 48.0 1.7 4.40bc 1.55f 0.38cd 1.19de

Values followed by the same letter in a column are not significantly different by Tuckey Test (0.05)

(Figure 2). In the absence of substrate application (control treatment), the mungbean

did not grow when the soil exchangeable Al3+ exceeded 11 cmol kg−1, and a maximum

biomass of 6 g plant-1 was observed with Al3+concentrations of <9 cmol kg−1. With

the addition of 3 Mg ha−1 of aerobically composted organic substrates, the critical Al3+

value for mungbean growth increased from 11 up to 15 cmol kg−1 and the dry matter

accumulation reached a maximum of 14 g plant-1 at 9 cmol Al3+ (Figure 2). The

strongest growth response (and highest Al3+ tolerance) was observed with the applica-

tion of well-rotten substrates with a wide C/N-ratio and high P concentrations (e.g.,

pig manure compost).

The growth of mungbean responded to increasing application rates of biogas sludge

(test substrate in experiment 2) and shifted the critical aluminum concentration for

mungbean growth from 11 (control) over 13 (3 Mg sludge ha−1) to 15 cmol kg−1 (6 Mg

sludge ha−1), while increasing the maximal plant biomass at 10 cmol Al3+ kg−1 from 2 g

(unamended control) to 12 g (data not shown). A comparison of the regression equations

showed no significant differences of the slopes, while the X-axis intercept (critical Al

concentration) shifted from 11 to 15 cmol Al3+ kg−1 with substrate amendments.
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Figure 2: Mungbean response (dry matter accumulation of 12 week-old plants) to the

application of 3 Mg ha−1 of biogas sludge or of of pig manure compost in
relation to soil exchangeable Al3+ on an acid sulfate soil (dry season, Hoa
An, Vietnam, 2004).
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4 Discussion

Stagnating long-term yield trends in intensified rice-based cropping systems have been

reported throughout Asia (Cassman et al., 1997; Dawe et al., 2000; Regmi et al.,

2002) and changes in soil organic matter quality under constant soil anaerobiosis and

a declining soil N and P supplying capacity have been identified as the main culprits

(Dobermann et al., 2000; Ladha et al., 2003). Breaking the cycle of permanent soil

flooding by replacement of dry season rice with upland crops and in increased addition of

organic substrates have been hypothesized to counteract the yield decline (Dawe et al.,

2003; Ladha et al., 2003). The present work focused solely on the effect of substrate

application on mungbean grown in rotation with rice. Nevertheless, the alleviating effects

of various substrates on soil-related problems may also have positive carry-over effects

on the subsequent crop of rice and the cropping system at large. In this context, the

following chapters will discuss the decomposition dynamics and yield effects of organic

amendments.
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4.1 Substrate mineralization

Organic substrates contain besides a range of C sources, variable quantities of essential

nutrient elements, salts, and heavy metals. However, the organic amendments need

to undergo microbial decomposition before these elements can become plant available.

Mineralization processes and rates are affected by temperature and moisture, microbial

activity, soil texture, and substrates properties such as C/N ratio, content of lignin

and polyphenols, and the lignin-to-N ratio (Palm and Sanchez, 1991; Becker and

Ladha, 1997; Dendooven et al., 1998; Calderón et al., 2004). In the present study,

soil texture and moisture conditions among the study sites were similar, while pH and the

availability of P strongly differed between the alluvial and the acid sulphate soil. Hence,

soil acidity and P limitations were likely to have been responsible for lower C and N

mineralization at the Hoa An than the An Binh site. This appears to be confirmed by the

observed high substrate mineralization rates of the P-rich pig manure-based substrates

at Hoa An. In this acid sulphate soil, substrate decomposition may have been inhibited

by soil acidity and possibly by P precipitation with soluble Al3+ and Fe. Consequently,

the N mineralization of substrates was apparently related to the C/P rather than to

the C/N ratio, as previously reported by Whalen et al. (2000). From the present

data we conclude that the C/N and the C/P ratio may be the key drivers of substrate

mineralization in the alluvial and the acid sulphate soil, respectively.

4.2 Soil and crop effects of organic amendments

Irrespective of the site, soil type or substrate, organic amendments generally improved

the performance of mungbean. This may have been related to the direct addition of

limiting plant nutrients and/or to a possible indirect effect via an alleviation of (H+ and

Al3+) toxicities. On the acid sulphate soil, acidification and Al toxicity are likely to

have further exacerbated the prevailing problem of P deficiency (Ren et al., 2004). The

extent of the ameliorative effects of organic amendments on P deficiency and Al toxicity

depended on both the amount and the quality of the substrate. Similar to the substrate

mineralization patterns, direct effects on crop biomass were related to N additions in

the alluvial and to P addition and Al toxicity alleviation in the acid sulphate soil. The

latter effects were much more pronounced with aerobic (compost) than with anaerobic

(sludge) substrates. This may be related to a larger share of stable, non-soluble C-

compounds in the composts, which can reportedly immobilise toxic Al3+ by forming

non-toxic Al–DOM complexes (Hue and Licudine, 1999) or humic complexes with

Al and Fe ions (Iyamuremye et al., 1996). While the application of lime can rapidly

correct the prevailing soil pH-related constraints, lime is currently hardly available in

the Mekong Delta and not affordable to low-input farmers. Organic substrates on the

other hand are widely available on farm and may thus provide a short-term alternative

to alleviate Al toxicity and nutrient deficiency problems.

On the alluvial soil, the pronounced effect of substrate application on the biomass

yield of mungbean was not only related to P but also to the amount of added N

(P<0.01), which may surprise in the light of mungbean being a nitrogen-fixing legume.

Nevertheless, fixation rates were probably very low and few effective (red) nodules were
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found, possibly related to the heavy soil texture, high bulk density and low plant-available

P and exchangeable K in the soil.

The inclusion of an aerobic soil phase by growing an upland crop has been shown to

obtain substantial yields of crops that tend to have a much higher market value than rice.

The application of the organic substrates not only stimulated the performance of these

high-value crops, but may also result in significant residual effects on the subsequent

crop of wet season rice (Becker and Ladha, 1997; Eghball et al., 2004). Such

longer-term effects of substrate application on soil parameters may include enhanced

soil P dynamics, increasing availability of P, Mg, Zn, Fe, and Cu, as well as improving

soil biological and chemical properties (Kirk, 2004, pp. 135-164). It may thus be

assumed that the effects of substrate application reported in this paper are likely to

contribute to longer-term improvements of these production systems. While presenting

a promising option, the organic substrates need to be matched with soil-specific needs.
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